• Title/Summary/Keyword: Railway power substation

Search Result 116, Processing Time 0.026 seconds

Development of Regeneration Invertor System for DC Electric Railway System (DC전철구간의 회생인버터시스템 개발)

  • Kim, Yong-Ki;Kim, Ju-Rak;Han, Moon-Seob;Kim, Jun-Gu;Yang, Young-Chul
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.505-511
    • /
    • 2008
  • when electric traction system used DC 1500V runs on decline of rail road track and slows down, dc voltage goes beyond regular voltage. In this case extra power is forcibly wasted by resister because rectifier of substation and electric train including power converter and so on are out of order. This paper described a DC electric railway system, which can generate the excessive DC power form DC bus line to AC source in substation for traction system. The purpose of this study was the development of the regenerative inverter system which suppress extra DC-line voltage and regenerate the energy instead of using a resister. That is Developed regenerative inverter system returns the regenerative energy from the DC line voltage to the utility. In addition, the inverter can be compensate the harmonics caused by the power conversion devices used in the DC traction system.

  • PDF

State Estimation of Electric Railway Substation using Equality Constraints (등식제약조건을 이용한 전철변전소 상태추정)

  • Kim, Baik;Hong, Hyo-Sik;Yoo, Kwang-Kiun
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.4
    • /
    • pp.419-424
    • /
    • 2010
  • Through the process of state estimation in the electric railway substation, this paper presents a new method for improving the reliability of the measurements corrupted by gauge error. Unlike the case of commercial power systems, it has been difficult to perform the state estimation by using the usual methods in the electric railway substation. At some of the monitoring points in the substation, most often, it is hard to define the measurement functions by use of the states or as we set up a new states set with the change of system topology, some of the measurement functions become part of the states themselves, which leads to poor results. To resolve the problems in the existing method caused by the relations between the states and the measurement functions at the monitoring points, the proposed method in this paper exploits the equality constraints. They can be derived numerously and concisely from the current and the voltage attributes of the Scott transformer and the buses connecting conditions, etc. We have proofed the effectiveness of the proposed method by the test on a standard sample substation.

Study on Analysis of Operating Characteristics of Motor Block While KTX is Moving at Neutral Section of Kyung-Bu High Speed Line (경부고속선 절연구간에서 KTX 운행중 모터블럭의 동작특성 분석)

  • Choi, Chang Hyun;Lho, Young Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.10
    • /
    • pp.1523-1527
    • /
    • 2015
  • Traction power is supplied by three-phase alternating current of 154 kV power grid and electric trains are operated on single phase feeding system. It becomes important to use all the three phases equally and convert them into two-phase electric power (90 degree phase rotation) for traction supply. This is achieved by special transformer from the adjacent traction substation which is separated by a neutral section. Neutral section locations are in front of the substation and between the two substations. The first stage of the Seoul-Busan high-speed railway, design curve radius is larger than 7,000 m and the greatest slope is 25‰. The railway track conditions are evaluated as good enough to install a neutral section at the first stage, but a few factors of coasting operation of the train should be considered at the second stage of Seoul-Busan high-speed railway. The neutral section was located at Kim-cheon substation, which made some neutral section problems produced by the operating train, and the neutral section was moved about 1.5 km to the south toward Dong Dae-gu station due to the track operation condition. Some of the trains which stopped at the existing Kim-cheon Gu-mi station produced another motor block failure after moving the neutral section. In this paper, power quality, system performance and track condition, etc. are suggested to solve the problems.

Analysis of Power Quality in the Substation of Honam Electrification Line according to Running Characteristic of Electric Locomotive (호남선 EL8100 전기기관차시험 운행에 따른 급전시스템 전력품질 특성 검토)

  • Shin Chang-Ki;Han Moon-sub;Lee Jang-mu;Jang Dong-uk;Lee Han-min
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1292-1296
    • /
    • 2004
  • This study is experimented results of running characteristics about electric locomotive. it executed to study a power quality in the substation of Honam electrification line and to promote knowledge, observation and management in electric rail-system. we measured to know the more exactly running characteristics that electric locomotive and electric substation at the same time.

  • PDF

A Control Method of Phase Angle Regulator for Parallel-Feeding Operation of AC Traction Power Supply System (교류전기철도 병렬급전 운영을 위한 위상조정장치 제어기법)

  • Lee, Byung Bok;Choi, Kyu Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.672-678
    • /
    • 2020
  • The parallel-feeding operation of an AC traction power supply system has the advantages of extending the power supply section and increasing the power supply capacity by reducing the voltage drop and peak demand caused by a train operation load. On the other hand, the parallel-feeding operation is restricted because of the circulating power flow induced from the phase difference between substations. Moreover, the power supply capacity is limited because of the unbalanced substation load depending on the trainload distribution, which can be changed by the train operation along the railway track. This paper suggests a Thyristor-controlled Phase Angle Regulator (TCPAR) to reduce the circulating power flow and the unbalanced substation load, which depends on the phase difference and the trainload distribution and provides a feasibility study. A dedicated control model of TCPAR is also provided, which uses substation power supplies as the input to control the circulating power flow and an unbalanced substation load depending on the phase difference and the trainload distribution. Simulation studies using PSCAD/EMTDC shows that the proposed TCPAR control model can reduce the circulating power flow and the unbalanced substation load depending on the phase difference and the trainload distribution. The proposed TCPAR can extend the parallel-feeding operation of an AC traction power system and increase the power supply capacity.

Parallel Control Algorithm of Thyristor Dual Converter Power System for DC Power Substation of Railway (철도 직류 급전용 싸이리스터 이중 컨버터 전력 시스템의 병렬운전 기법)

  • Kim, Young-Woo;Moon, Dong-Ok;Lee, Chang-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.9-17
    • /
    • 2017
  • A parallel control algorithm of thyristor dual-converter power system for the DC power supply of railway is proposed. The circulating current and current imbalance generated during parallel operation can be limited to control the output voltage of each power system by using the proposed parallel control algorithm. The proposed control algorithm can also eliminate output current sensor to achieve the same output response without additional costs. The validity of the proposed algorithm is verified through simulation and experiment.

A Study on the Firing Angle at the Mode Conversion to Improve the Output Characteristics of the Double Converter for Urban Railway DC Power Supply (도시철도 직류급전용 더블컨버터의 출력특성 향상을 위한 모드 변환 시 점호각 제어 연구)

  • Seo, Seung-Sam;Han, Sung-Woo;Byun, Gi-Sig
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.6
    • /
    • pp.533-542
    • /
    • 2015
  • This paper suggest away to maintain constant power through trolley wire by transferring increased line voltage to the AC main line while changing the mode from Converter(Forward) to Inverter(Reverse) when the line voltage is increased due to regenerative power when the train stops, This paper suggests a Double Converter DC substation that can create regenerative power when the train stops reusable. We also proposed using a simulation tool, the optimal Thyrister firing angle that can minimize the undershoot and overshoot that occurs when transferring the mode from Converter to Inverter for quality improvement of DC voltage in the Double Converter in the DC substation from the Busan Urban Subway.

Improvement Method of Supplying Reliability on the Electric Railway Power Distribution System (전기철도 고압배전시스템의 공급신뢰도 향상 방안 연구)

  • Kim Young-Sun;Chang Sang-Hoon;Kim Wang-Gon
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.682-687
    • /
    • 2005
  • High quality power supplying of power distribution system in electric railway system is the important function. Power feeding system is complicated witch is compose with distribution line, circuit break, protection facilities and so on. Among this components, role of substation is most important for elevation of reliability in electric power system. Therefore, the enhanced reliability considering the preventive inspection, repair work, replacement is necessary. In this study, a proposed the enhanced reliability method through a calculation of fault probability in power feeding system.

  • PDF

The comparison and investigation of harmonic magnification according to power supply schemes in high speed railway (고속철도의 급전계통 구성에 따른 고조파 확대율 비교 검토)

  • Lee, Chang-Mu;Oh, Kwang-Hae;Chang, Sang-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1402-1404
    • /
    • 2000
  • The electrified railway has various power supply schemes. Although the identical trains are operated in same condition and the impedance of track are equal, the genealogy impedance of track is changed according to composition method of feeding scheme. So, the harmonic current flowing into the railway substation are greatly unlike. For simulation of harmonic magnification flowing into the railway substation according to feeding scheme, we propose 6-port network analysis method based on 4-port network, find 6-port equivalent model of each circuit component, and compare and investigate harmonic magnification in the case of parallel post and normal feeding scheme.

  • PDF

A Study on the Energy Saving Strategy in Electric Railway System (직류 전기철도 에너지 절감방안 연구)

  • Choi Byung-Woon;Chang Sang-Hoon;Kim Hak-Ryun
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.676-681
    • /
    • 2005
  • The regenerative braked cars are being introduced in DC electric railway for energy saving. There has been a recent tendency for DC traction substation with regenerative inverter to increase in number. This is strongly related to the desire for effective utilization of electric power regenerated by DC electric cars and to the aim ensuring stable operation of regenerative braking system. The regenerative inverters DC power feed back from a generative car into AC power at a substation and supplies it to distribution lines. This paper suggest the result of characteristic analysis and capacity simulation. economical analysis in the regenerative inverter system.

  • PDF