• Title/Summary/Keyword: Railway noise

Search Result 903, Processing Time 0.027 seconds

Investigation of the Dynamic Properties of Railway Tracks using a Model for Calculation of Generation of Wheel/Rail Noise

  • Koh, Hyo-In;Nordborg, Anders
    • International Journal of Railway
    • /
    • v.7 no.4
    • /
    • pp.109-116
    • /
    • 2014
  • For optimization of a low-noise track system, rail vibration and noise radiation needs to be investigated. The main influencing parameters for the noise radiation and the quantitative results of every track system can be obtained using a calculation model of generation and radiation of railway noise. This kind of model includes contact modeling and the calculation model of the dynamic properties of the wheel and the rail. This study used a nonlinear wheel/rail interaction model in the time domain to investigate the excitation of the rolling noise. Wheel/rail response is determined by time integrating Green's function of the rail together with force impulses from the wheel/rail contact. This model and the results of the study can be used for supporting calculation with the conventional model by an addition of the contributions due to nonlinearities to the roughness spectrum.

The Study for the Assessment of the Noise Map for the Railway Noise Prediction Considering the Input Variables (철도소음예측시 입력변수의 영향을 고려한 소음지도 작성 및 평가)

  • Lee, Jaewon;Gu, J.H.;Lee, W.S.;Seo, C.Y.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.4
    • /
    • pp.295-300
    • /
    • 2013
  • The noise map can be applied to predict the effect of noise and establish the noise reduction measure. But the predicted value in the noise map can vary depending on the input variables. Thus, we surveyed the several prediction models and analyzed the changes corresponding to the variables for obtaining the coherency and accuracy of prediction results. As a result, we know that the Schall03 and CRN model can be applied to predict the railway noise in Korea and the correction value, such as bridges correction, multiple reflection correction, curve correction must be used for reflecting the condition of the prediction site. Also, we know that the prediction guideline is an essential prerequisite in order to obtain the unified and accurate predicted value for railway noise.

Analysis of Noise Contribution using Frequency Response Function and Measurements of Noise Distribution for Railway Interior Noise (주파수 응답 함수를 이용한 철도차량 실내소음 기여도 분석 및 분포도 측정)

  • 김재철;유원희
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.949-954
    • /
    • 1999
  • Speed-up and mass reduction of railway vehicle usually causes increased of the interior noise. One of the best ways to control the interior noise is to identify the noise level radiated from each of parts in the cabin. In this paper, we describe the method to estimate the interior noise nad evaluate the noise contribution to each of parts. This method is based that the sound pressure can be calculated by using the frequency response function and acceleration. According to analysis of the noise contribution, we validated that the noise radiated from the floor is the higher in the cabin. We also measured the noise distribution for the side and floor by using the microphone array in order to analyze the effect of the noise flowing into the cabin from the outdoors. Finally, we presented the plan of the interior noise reduction based on the noise levels radiated from each of parts.

  • PDF

Influence of the Speeds on the Curve Squeal Noise of Railway Vehicles (철도차량의 곡선부 스킬 소음에 대한 속도의 영향)

  • Lee, Chan-Woo;Kim, Jae-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.572-577
    • /
    • 2011
  • Curve squealing of inter-city railway vehicle is a noise with high acoustic pressure and rather narrow frequency spectra. This noise turns out to be very annoying for the people living in the neighborhood of locations and the passenger in railway vehicle where this phenomenon occurs. Squealing is caused by a self-exited stick-slip oscillation in the wheel-rail contact. Curve squeal noise of railway vehicles that passed by a factor of the speed limit, so to overcome in order to improve running performance is one of the largest technology. In the present paper, characteristic of squeal noise behavior at the Hanvit-200 tilting train test-site. Curve squealing of railway wheels/rail contact occurs in R400~ R800 curves with a frequency range of about 4~11 kHz. If the curve is less than the radius of wheel frail contact due to |left-right| noise level difference (dBA) shows a significant effect of squeal noise were more likely.

Study on the Evaluation Standard of Noise and Vibration for Environment-Friendly Railway Construction (환경 친화적 철도건설에 따른 소음.진동의 평가기준)

  • Kim, Dong-Ki;Park, Byung-Eun;Han, Sung-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.473-478
    • /
    • 2007
  • The energy efficiency and environment-friendly aspect of the railway system would be superior to other on-land transportation systems. In a preliminary feasibility study stage, the energy efficiency and problems related with environment are usually not considered. The railway noise and vibration which could be reasons of environmental problems are focused and studied in this paper. The investment for railway systems could be encouraged by the considering of main environmental elements evaluated with the modified noise and vibration standard for environment-friendly railway construction.

  • PDF

A Study on the Acoustic Power DB Building for Korean Railroad in order to Predict Nearby Noise (한국철도 환경소음예측을 위한 음향파워 DB 구축에 관한 연구)

  • 조준호;이덕희;정우성;신민호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.265-270
    • /
    • 2001
  • For the reduction and efficient management of railway noise, first of all prediction of railway noise is necessarily requested, At home and abroad, many studies for prediction of railway nearby noise have been accomplished, But it is impossible to predict exactly for the Korean Railroad, because the acoustic power DB for each rolling stock used in Korea has not been builded yet. So in this study, acoustic power DB for each Korean rolling stock such as Samaeul, Mugungwha was builded according to the speed and rail support systems. Predicted results using accumulated acoustic power DB are compared with measured results and it is known that accumulated acoustic power DB can be used for more precise prediction of railway nearby noise.

  • PDF

The Reduction of Structure-borne Noise in an Elevated Station(Changdong Station) of Seoul Metro Line No. $1\sim4$ (서울메트로 $1\sim4$호선 고가역(창동역) 고체소음 저감 사례)

  • Kong, Sun-Yong;Oh, Hee-Wan;Kim, Sang-Jin
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.438-443
    • /
    • 2007
  • In the recent railway construction, the concrete slab track is highlighted as the maintenance-free track and the main stream is moving from ballasted track to concrete slab track. However, in spite of many merits of concrete slab track, the higher noise generated from the concrete slab track is a troublesome question to solve and, by this reason, many studies on noise reduction of concrete slab track are carried out. The railway noise can be classified into the reflection noise emitted from wheel/rail contact and the structure-borne noise transmitted through railway structures. In this presentation, we would like to introduce an example of the successful reduction of structure-borne noise at track retrofitting to maintenance-free concrete slab track in elevated Changdong Station which was built with ballasted track on Rahmen structure.

  • PDF

Investigation of Source Modelling for External Noise Prediction of Railway Vehicles (철도차량 외부소음 예측을 위한 음원모델에 관한 고찰)

  • Kim, Jong-Nyeun
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1069-1077
    • /
    • 2009
  • For external noise prediction of railway vehicles, sophisticated individual source modelling as well as appropriate noise propagation model from the sources is necessary to ensure the accuracy of the predicted results and contributions of each equipment to the overall noise levels. Accurate and reasonable identification procedures of sound sources of equipment including source strength, directivity and positions installed in the train play an important role in a prediction model, since it is not easy to establish a simple model for the sources with a single rule due to the complexity of source characteristics of equipment in size and directivity pattern. This paper guidelines practical considerations for identification of noise sources in railway vehicles including typical source characteristics of several sub-systems that emits noise to the environment, particularly for electric multiple unit(EMU), and verify effectiveness of assumptions used in the modelling of equipment by measurement with a simple part. The predicted external noise level of a complete train using Exnoise, which was developed by Hyundai-Rotem and has been verified in the a lot of field-tests, incorporating source modelling considered in this paper shows close correlation with the measured ones.

  • PDF

3D Expression of Outdoor Railway Noise : NIC@E (철도 환경 소음의 3-D 표현: NIC@E)

  • 김준연;김정태
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.521-528
    • /
    • 2000
  • NIC@E is software for prediction of various outdoor Noise. The program is based on the ray tracing technique which has been widely used in an environmental noise prediction and analysis. In this paper, we analyze the Railway noise on the various types of geometrical source conditions in 3D and develope tile expression method of 3D Graphics for noise level.

  • PDF

A Study on the Squeal Noise for Domestic EMU (국내 전동차 스퀼소음에 관한 연구)

  • 문경호;김재철;유원희;서정원
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.66-71
    • /
    • 2002
  • Squeal noise is generated by railway vehicles transversing tight curves. This squeal has always been noticed as one of the most disturbing noise sources of railway systems. At present we cannot predicted squeal noise that is influenced by a large number of dependent parameters. In this study, we performed structural analysis to find out the frequency of the wheel and also measured squeal noise at Seoul subway line 1, line 2, line 4 for domestic EMU(Electrical Multiple Unit).

  • PDF