• Title/Summary/Keyword: Railway Vehicle Wheel

Search Result 286, Processing Time 0.025 seconds

A Study on the Design of Small-Scaled Derailment Simulator considering Similarity Rules (상사법칙을 고려한 소형탈선시뮬레이터 설계에 관한 연구)

  • Eom, Beom-Gyu;Lee, Se-Yong;Oh, Se-Been;Kang, Bu-Byoung;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1085-1091
    • /
    • 2011
  • The dynamic stability of railway vehicle has been one of the important issues in railway safety. The dynamic simulator has been used in the study about the dynamic stability of railway vehicle and wheel/rail interface. Especially, a small scale simulator has been widely used in the fundamental study in the laboratory instead of full scale roller rig which is not cost effective and inconvenient to achieve diverse design parameters. But the technique for the design of the small scale simulator for the fundamental study about the dynamic characteristics of the wheel-rail system and the bogie system has not been well developed in Korea. Therefore, the research about the development of the small scale simulator and the bogie has been conducted. This paper presents the design of the small-scaled derailment simulator and the example design case of a small scale bogie. The simulator could be used in the study about the effect of diverse parameters such as attack angle, wheelbase and cant on dynamic behavior of the bogie and the safety parameter such as derailment coefficient and critical speed.

  • PDF

A Study on the Running Safety of F26 Turnout and Vehicle Model

  • Kim, Sung Jong;Eom, Beom-Gyu;Lee, Hi Sung
    • International Journal of Railway
    • /
    • v.5 no.4
    • /
    • pp.156-162
    • /
    • 2012
  • When a vehicle passes through turnout, it is required to minimize the changes of lateral force for running safety of vehicle. Therefore, it is necessary to analyze interaction between the vehicle and the turnout in order to estimate the lateral force and the derailment coefficient on the turnout. In this paper, analysis model of the vehicle and turnout are established and analysis is carried out when the vehicle passes through turnout in order to improve running safety of the vehicle on turnout. To verify the vehicle and turnout analysis model, the contact points between wheel and rail and the influence of changing cradle and tongue rail are also discussed.

Evaluation of running safety for korean high speed railway vehicle (한국형 고속철도차량의 주행안전성 평가)

  • Ham Young-Sam;Hur Hyun-Moo
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.316-321
    • /
    • 2003
  • The railroad is a means of large transportation which has many talents such as a safety and a regularity. That is a results from various confidential performance tests and evaluations of the system. The railroad system consist of various subsystems - vehicle, power supply, signal, communications, track structures, operations, etc. Among them, as an item of safety evaluation there is a measurement of wheel/rail force, so called a measurement of derailment coefficient. This is a very important item because a derailment of a train will bring about a big accident. Especially it is more important in high speed rail of which operation speed is over two times as fast as existing rail. In this paper, it is introduced to preprocess the wheelset for measuring wheel/rail force of high speed rail, such as to treat a measuring wheelset, adhesion of strain gauges and static load test, running test result of main line.

  • PDF

Analysis of CWR Track Considering Wheel Loads (열차하중을 고려한 장대레일 궤도 해석)

  • Han, Sang-Yun;Kang, Young-Jong;Han, Teak-Hee;Lim, Nam-Hyoung;Kim, Jung-Hun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2487-2492
    • /
    • 2011
  • At high rail temperature above the neutral temperature, high compressive axial stresses will occur in the rails. High thermal axial force and vehicle loads cause the track to shift in a lateral direction and the formation of track geometry imperfections (track irregularity). When the thermal stress level and track irregularity with vehicle load reach a critical value, the track loses stability. In many studies, the stability of CWR tracks is analyzed. However these studies are only considered in temperature load. The main objective of this investigation was to estimate a new, comprehensive, realistic, the stability of CWR tracks considering wheel load. The ballast resistance is changed by wheel load. When the wheel load is applied, rails and ties are moved upward or downward. In this case the friction between ties and ballasts is decreased or increased. In this study the change of the ballast resistance of each tie was applied to the nonlinear analysis of CWR tracks.

  • PDF

Evaluation of running safety and measuring wheel/rail force for korean high speed railway vehicle (한국형 고속철도차량의 차륜/레일 작용력 측정 및 주행안전성 평가)

  • 함영삼;오택열;백영남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.507-512
    • /
    • 2003
  • The railroad is a means of large transportation which has many latents such as a safety and a regularity. That is a results from various confidential performance tests and evaluations of the system. The railroad system consist of various subsystems - vehicle, power supply, signal, communications, track structures, operations, etc. Among them, as an item of safety evaluation there is a measurement of wheel/rail force, so called a measurement of derailment coefficient. This is a very important item because a derailment of a train will bring about a big accident. Especially it is more important in high speed rail of which operation speed is over two times as fast as existing rail. In this paper, it is introduced to preprocess the wheelset for measuring wheel/rail force of high speed rail, such as to treat a measuring wheelset, its finite element analysis, adhesion of strain gauges and static toad test, running test result of main line.

  • PDF

Derailment Impact Factor Analysis Utilizing Wheel Derailment Test Facilities (차륜탈선 시험설비를 활용한 탈선 영향인자 분석)

  • Ham, Young-Sam
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.62-68
    • /
    • 2011
  • This is a testing equipment system to analyze variation of creep force according to wheel-rail tread profile, running speed of vehicle, vertical and lateral force, wheel/rail contact point, attack angle and so on. In this paper, derailment occur in stages until the change of each parameter, while reproducing the actual situation was derailed. Thus, to derail what is the most influencing factors were analyzed.

  • PDF

Numerical Analysis to Investigate Dynamic Characteristics of Steel Plate Girder Railway Bridges without Ballast (무도상 판형교의 동적거동특성 분석을 위한 해석적 연구)

  • 최진유;오지택;김현민;김영국
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.1080-1085
    • /
    • 2002
  • A dynamic characteristics of existing steel plate girder railway bridges without ballast were investigated from the finite element analysis. Span lengths, types of vehicle and running speeds are selected as parameters for analyses. For more exact analysis, it was adopted that 3-dimensional bridge models and wheel loads were produced by averaging field measured wheel loads of running vehicles at various speeds. Dynamic vertical deflections, dynamic amplification factors and vertical accelerations of bridges having 9m, 12m and 18m span length were investigated and compared with the limit values specified in Korean railway bridge specification.

  • PDF

Sensitivity Analysis of Suspension Elements of an Articulated Bogie for Light Railway Vehicles (경량전철용 관절대차 현가요소의 민감도 해석)

  • Han, Hyung-Suk;Hur, Shin;Ham Sung-Do;Cho, Dong-Hyun
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.421-428
    • /
    • 1998
  • Sensitivity analysis of suspension elements of an articulated bogie for light railway vehicles is presented. The ride, stability and safety are used as dynamic performance index. Suspension elements of 10 and a conicity of wheel are used as design variables, To analyze sensitivity of design variables, the railway vehicle dynamics analysis program AGEM is used. The results shows that the secondary suspension elements have a strong effect on ride and the primary suspension elements have a moderate effect on ride. Conicity of wheel has a strong effect on the stability, The safety is not effected by all the design variables.

  • PDF

Dynamic behavior analysis of the high speed EMC(Electric Multiple Unit) (동력분산형 고속철도의 주행성능 해석기술 연구)

  • Yoon, Ji-Won;Park, Tae-Won;Lee, Moon-Gu;Jun, Kab-Jin;Park, Sung-Moon;Kim, Jung-Bum
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1160-1165
    • /
    • 2008
  • The development of a new railway vehicle is under progress through the Next Generation High-Speed Rail Development Project in Korea. Its aim is to develope fundamental technology of the vehicle that can run over 400km/h. The new distributed traction bogie system, 'HEMU'(High-speed Electric Multiple Unit), will be used and is different from previously developed high speed railway vehicles. Previous vehicles adopted push-pull type system, which means one traction-car drives rest of the vehicle. Due to the difference, investigation on dynamic behavior and its safety evaluation are necessary, as a part of verification of the design specification. In this paper, current progresses of researches are presented. And the High-Speed Railway vehicle system is evaluated for a dynamic characteristic simulation. Proper models including air-suspension system, wheel-rail, bogie and car-body will be developed according to the vehicle simulation scenario. International safety standard will be applied for final verification of the system. This research can propose a better solution when test running shows a problem in the parts and elements. Finally, the vehicle that has excellent performance will be developed, promoting academic achievement and technical development.

  • PDF

Analysis on Running Safety for KTX Vehicle (KTX차량의 주행 안전성 해석)

  • Kim, Jae-Chul;Ham, Young-Sam
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.473-479
    • /
    • 2007
  • Lateral vibration at the tail of KTX train was found during the acceptance test. In order to settle the problem of lateral vibration, the wheel conicity was changed 1/40 to 1/20. However, we should evaluate the running safety of vehicle with 1/20 wheel conicity because modification of wheel conicity may cause the running performance to be worse and critical speed to reduce. In this paper, we calculate critical speed of KTX bogie as wheel conicity increase and analyze the running safety for KTX that has 20 car trainset formation using VAMPIRE. and compare with the test results of KHST to validate analysis results on high speed line. A analysis results show that critical speed of 0.3 wheel conicity is over 375km/h and curving performance of 1/20wheel conicity is better than 1/40. Also, we examinate the running performance of KTX to check out possibility to increase speed of KTX on conventional line. A analysis results show that it is possible to increase up to 10% the speed of KTX on tangent line but KTX on a curved line should be operated with the speed of conventional train.