• 제목/요약/키워드: Railway Surface Condition

검색결과 62건 처리시간 0.029초

도시철도 차량 차륜 플랜지의 마모패턴에 관한 연구 (A Study On Wear Pattern of Wheel Flange for Urban Railway Vehicle)

  • 노학락;맹희영;권석진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.71-77
    • /
    • 2007
  • The surface of railway wheel tread in wheel-rail system can not be free from wear because of various circumstance such as railway condition, maintenance condition, weather condition, characteristics of wheel surface's geometrical shape, and vehicle suspension's structural characteristics etc. Therefore, the research on wear reduction and maintenance method are very important to ensure the safety of railway vehicle, to improve car comfort and to decrease maintenance cost. In this study, the wear rates of railway wheel have been periodically measured in terms of the running distance of Electrical Multiple Unit which have been currently operated and the microstructure transformation of wheel tread using replication method have been performed. The results show that the relations between the flange wear and tread microstructure are depended on running distance and it will supply basic data on wheel maintenance.

  • PDF

Optimization of Suspension Under the Condition of Curved Track in Railway Vehicle

  • Choi, Jong Yoon;Li, Zheng Yuan;Baek, Seung Guk;Song, Ki Seok;Koo, Ja Choon;Choi, Yeon Sun
    • International Journal of Railway
    • /
    • 제7권2호
    • /
    • pp.57-63
    • /
    • 2014
  • This paper presents the optimization of suspension characteristics under the condition of curved track railway vehicles. Reducing lateral acceleration on curved track is an issue for high-speed railway vehicles. In terms of curved track running environments, reducing the lateral vibration of railway vehicles is critical to safety and curving performance. The properties of lateral damping and stiffness of both primary and secondary suspension show effect on wheel-set, bogie and car-body. Analysis for reducing the lateral vibration of rail vehicles with respect to the characteristics of both primary and secondary suspension has been developed using ADAMS/Rail. Response Surface Method has been chosen for the purpose of verifying correlation effects among design parameters. Also, this paper suggests the method for designing optimal suspension of railway vehicles on curved track. The optimization result indicates decrement of lateral acceleration on wheel-set by 3% and bogie by 1% on curved track. Finally, this paper comes to the conclusion that suspension system of railway vehicle (KTX I) is properly designed when regarding lateral vibration of railway vehicle on diverse curved track condition.

KTX 운행현황을 고려한 고속선 레일 연마 기준 정립에 대한 연구 (Study on the Establishment of Rail Grinding Criteria of High-Speed Railway Lines Considering the KTX Operation Circumstances)

  • 김만철;강태구
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.377-385
    • /
    • 2007
  • The importance of maintenance of rail surface defects is increasing more according to the KTX operation. That is because during high speed operation of rolling stock, rail surface defects may cause shortened fatigue life of rail, acceleration of track degradation and reduced ride comfort. The paper was intended to study the establishment of rail grinding criteria of high-speed railway lines considering the KTX operation circumstances. For this, the specimens of UIC 60 rail on Kyeong-Bu high-speed operation lines were collected and they were analyzed for metallographic structure and tested for the hardness. By analyzing the test results to the factors affecting the RCF causing the defects of rail surface, the study suggested the rail grinding criteria of the domestic high speed railway lines. As the factors affecting RCF, passing tonnage, running speed and track condition are considered.

  • PDF

차륜에 대한 열손상 평가 (Evaluation of Thermal Dmage for Railway Weel)

  • 권석진;서정원;이동형;김영규;김재철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.966-970
    • /
    • 2011
  • The thermo-mechanical interaction between brake block and wheel tread during braking has been found to cause thermal crack on the wheel tread. Due to thermal expansion of the rim material, the thermal cracks will protrude from the wheel tread and be more exposed to wear during the wheel/block contact than the rest of the tread surface. The wheel rim is in residual compression stress when is new. After service running, the region in the tread has reversed to tension. This condition can lead to the formation and growth of thermal cracks in the rim which can ultimately lead to premature failure of wheel. In the present paper, the thermal cracks of railway wheel, one of severe damages on the wheel tread, were evaluated to understand the safety of railway wheel in running condition. The residual stresses for damaged wheel which are applied to tread brake are investigated. Mainly X-ray diffusion method is used. Under the condition of concurrent loading of continuous rolling contact with rails and cyclic frictional heat from brake blocks, the reduction of residual stress is found to correlate well with the thermal crack initiation.

  • PDF

콘크리트도상(STEDEF)의 선로조건을 고려한 레일휨응력 예측과 피로수명 산출 (Evaluation of Rail Fatigue and Bending Fatigue Considering Concrete Track Condition)

  • 이수형;강유송;박용걸
    • 한국철도학회논문집
    • /
    • 제20권5호
    • /
    • pp.658-667
    • /
    • 2017
  • 철도는 여객을 수송하기 위한 수단으로, 열차의 주행안정성과 탈선방지 등 절대적인 승객의 안전을 확보하는 것이 중요하다. 철도에서 사용하고 있는 레일은 여객을 안전하게 수송하는데 있어 가장 중요한 역할을 담당하는 궤도의 구성품이며, 안전을 위하여 레일의 피로, 파괴에 대한 신뢰성 확보가 엄격히 요구되고 있다. 본 논문에서는 콘크리트 궤도(STEDEF)의 현장측정을 통해 레일표면요철과 레일휨응력이 선형적인 상관관계가 있음을 확인하였으며, 레일표면요철, 궤도지지강성, 열차속도에 따른 레일의 휨응력예측식을 제시하였고, 실내 피로시험을 통해 S-N선도를 도출하여 레일 피로수명을 산정하였다.

HWAW방법을 이용한 고속철도 하부 노반 평가 (Evaluation of the status of subgrade of high speed railway using HWAW method)

  • 박형춘;박준오;진남희;노희관;배현정
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.208-212
    • /
    • 2010
  • The high-speed railway consists of tracks, gravel ballast and subgrade, and the dynamic load is passed to subgrade through track and gravel ballast. The relaxation condition of the gravel ballast is able to be evaluate relatively and to be repaired through a continuous management, but it is difficult to evaluate the condition of subgrade, which is final part of supporting dynamic load and to repair it when made a problem. The gravel ballast and subgrade are evaluated by determining shear wave velocity. To evaluate ballast and subgrade, a good method to determine shear wave velocity is a non-destructive experiment such as surface wave tests providing a prompt experiment because an experiment in railway has a lot of tests which are carried out following railway directions and needs to prevent damage of the system. In general, a railway has limitation of an experimental space by narrow width, sleeper and etc., and background noise by a reflector exists. The existing surface wave tests need a minimum space, and it is difficult to get a reliable test results on account of background noise effect. Therefore, it is difficult or impossible to apply to existing surface wave test of subgrade and ballast. In this study, the HWAW method is applied to determine a shear wave velocity profile of the underground. The HWAW method is the experiment which is able to be carried out on a narrow space, and it determines share wave velocity of a site by measuring the wave from surface sources on the same spot. In addition, it removes effects of background noise accordingly to a signal processing using harmonic wavelet transforms, so it is useful to evaluate subgrade of a high-speed railway in the narrow space and the situation of background noise. In order to check an application of the HWAW method, an experiment is carried out on a high-speed railway field and a test result is compared to boring results.

  • PDF

철도 차축재료의 프레팅 피로거동 평가 (Evaluation of Fretting Fatigue Behavior for Railway Axle Material)

  • 최성종;권종완
    • 한국자동차공학회논문집
    • /
    • 제15권5호
    • /
    • pp.139-145
    • /
    • 2007
  • Fretting is a kind of surface damage mechanism observed in mechanically jointed components and structures. The initial crack under fretting damage occurs at lower stress amplitude and lower cycles of cyclic loading than that under plain fatigue condition. This can be observed in automobile and railway vehicle, fossil and nuclear power plant, aircraft etc. In the present study, railway axle material RSA1 used for evaluation of fretting fatigue life. Plain and fretting fatigue tests were carried out using rotary bending fatigue tester with proving ring and bridge type contact pad. Through these experiments, it is found that the fretting fatigue limit decreased about 37% compared to the plain fatigue limit. In fretting fatigue, the wear debris is observed on the contact surface, and oblique cracks at an earlier stage are initiated in contact area. These results can be used as useful data in a structural integrity evaluation of railway axle.

레일유지관리 효율화를 위한 경부 고속선 레일 연마 기준(안) (Rail Grinding Criteria of Kyeong-Bu High-Speed Line for Effective Rail Maintenance)

  • 김만철;강태구
    • 한국철도학회논문집
    • /
    • 제11권3호
    • /
    • pp.272-279
    • /
    • 2008
  • 레일 표면 결함에 대한 유지보수의 중요성이 KTX의 운행에 따라 더욱 증대되고 있다. 이는 고속 운행시 레일 표면 결함은 레일의 피로수명 단축과 궤도의 열화 증속 및 승차감 저하를 유발하기 때문이다. 본 연구는 KTX의 운행현황을 고려하여 경부 고속선의 레일 연마 기준을 제안하였다. 이를 위해서 경부 고속선에서 UIC 60 레일 시편을 체취하여, 현미경에 의한 미세 조직을 조사하고 경도를 측정하였다. 레일 표면 결함을 유발하는 RCF에 영향을 미치는 인자들로 통과 톤수, 주행속도 및 궤도상태를 고려하였다.

차륜과 레일 접촉위치의 수치해석에 관한 연구 (A Study on Numerical Analysis of Wheel-rail Contact Points)

  • 강주석
    • 한국철도학회논문집
    • /
    • 제12권2호
    • /
    • pp.236-242
    • /
    • 2009
  • 본 연구에서는 철도차량의 차륜과 레일에 대해 플랜지 접촉을 포함하여 모든 위치예서 차륜-레일간 접촉 위치를 수치 해석적으로 구하는 방범을 제안한다. 이를 위해 차륜과 레일의 형상은 매개변수로 표현되는 3차원 곡면함수로 나타내었다. 기구학적 구속조건식을 Newton-Rhapson 방법을 이용하여 구하는 것과 차륜과 레일간 최소거리가 0이 된다는 최적화 방법을 동시에 이용하여 정확하고 효율적으로 계산하는 새로운 방법을 제안하였다.

A Study on Behavioral Characteristics of Track Roadbed according to Steel Pipe Press-in Excavation during Construction of Underground Railway Crossing

  • Kim, Young-Ha;Eum, Ki-Young;Kim, Jae-Wang
    • International Journal of Railway
    • /
    • 제6권2호
    • /
    • pp.69-77
    • /
    • 2013
  • In this study, numerical analysis and model experiments were conducted to analyze behavioral characteristics acting on the track roadbed with excavation through steel pipe injection, a non-exclusive method of crossing construction under railroad as primary target. In model experiments that simulate injection excavation behaviors with an increase in the depth of soil cover, the upper displacement was measured by construction of the first and the second pipes in order to predict actual behaviors, and the behavior characteristics were verified through numerical analysis. The investigation results showed that surface displacement was smaller under the condition of higher soil cover. In the case of injecting two pipes, when the first pipe was injected, deformation of the surface increased linearly in both settlement and uplift experiments. However, when the second pipe was injected, the amount of change was found to be very small due to the relaxation and plastic zones around the first pipe. In addition, the results of numerical analysis on the same cross section with the model experiment found that the results of investigation into settlement ratio and volume loss were in very good agreement with those obtained by the model experiment.