• Title/Summary/Keyword: Railway Bridge

Search Result 821, Processing Time 0.025 seconds

Dynamic Behavior of Composite Steel Girder Bridge Exceeding Train Speed 350km/h (차세대고속열차 운행에 따른 호남고속선 강합성교의 동특성 분석)

  • Kim, Eunsung;Park, JongWoong;Sim, SungHan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3518-3527
    • /
    • 2013
  • The new developed train(HEMU-430X) faces running at high speed over 400km/h. But The Korea railway design code gives guidelines below 350km/h speed. Honam HighSpeed Railway was also designed based on the design standard below 350km/h. Existing infra structures have to be reviewed at high speed running and the design guideline for the speed over 350km/h should be prepared as soon as possible. This paper presents (1) the simulation results of composite steel girder bridge(Kaya Bridge of Seoul-Pusan HighSpeed Railway), (2) values measured at this bridge and the comparison with simulation results, and (3) the prediction of Yonjung bridge being constructed in Honam HighSpeed Railway.

Evaluation of Train Running Safety During Construction of Temporary Bridge on Existing Railway (기존선에서 가설교량 시공에 따른 열차의 주행안전성 평가)

  • Eum, Ki-Young;Bae, Jae-Hyoung;Choi, Chan-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.3
    • /
    • pp.234-239
    • /
    • 2011
  • Installing the temporary bridge after excavating the railway requires installing movable cross beam, but as it doesn't requires isolating the catenary or cutting the rail, it's applicable to double-track with frequent operation. In this study, a displacement meter was placed on temporary bridge to monitor the displacement pattern in curve section (R400) completed using temporary bridge method, and wheel load, lateral pressure and derailment coefficient were measured to evaluate the load imposed on track and the stability in curve section (R400) for quantitative evaluation of training running safety. As a result of the measurement, when trains passing over a temporary bridge, the maximum value of Wheel load and Lateral Force is analyzed as the 51% and 81% of standard level according to foreign country's performance tests, There is no trouble with stability analysis in Wheel load and Lateral Force occurring. Additionally, Wheel load and Lateral Force considered as the safety standard are tested 49% of limiting value regardless of trains, which the norm value quite well, there is no problem with train running.

Statistical Characteristics for Longitudinal Friction Behavior of Rail Fastening System for Concrete Track (콘크리트 궤도용 레일체결장치의 종방향 마찰거동에 대한 통계적 특성)

  • Bae, Hyun-Ung;Park, Sang-Jun;Yun, Kyung-Min;Park, Beom-Ho;Lim, Nam-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7870-7877
    • /
    • 2015
  • In the case of CWR (Continuous welded rail) located on the railway bridge, the CWR has additional axial force due to interaction of bridge and track. Therefore, the CWR tracks located on the bridge have to secure the safety of running train and CWR track through mitigating influence for interaction of bridge and track. The railway design guide in Korea (KR C-08080) provides a certain value for property of longitudinal friction behavior of rail fastening system that is major parameter of interaction behavior by applying European codes. However, in order to apply to domestic railway, it is necessary to review property characteristics of the rail fastening system in actual use. In this paper, the experiment for longitudinal friction behavior of rail fastener applied to concrete track on the railway bridge in Korea was carried out, and statistical characteristic for property of the rail fastener was analyzed from the result of the experiment.

Structural health monitoring of a high-speed railway bridge: five years review and lessons learned

  • Ding, Youliang;Ren, Pu;Zhao, Hanwei;Miao, Changqing
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.695-703
    • /
    • 2018
  • Based on monitoring data collected from the Nanjing Dashengguan Bridge over the last five years, this paper systematically investigates the effects of temperature field and train loadings on the structural responses of this long-span high-speed railway bridge, and establishes the early warning thresholds for various structural responses. Then, some lessons drawn from the structural health monitoring system of this bridge are summarized. The main context includes: (1) Polynomial regression models are established for monitoring temperature effects on modal frequencies of the main girder and hangers, longitudinal displacements of the bearings, and static strains of the truss members; (2) The correlation between structural vibration accelerations and train speeds is investigated, focusing on the resonance characteristics of the bridge at the specific train speeds; (3) With regard to various static and dynamic responses of the bridge, early warning thresholds are established by using mean control chart analysis and probabilistic analysis; (4) Two lessons are drawn from the experiences in the bridge operation, which involves the lacks of the health monitoring for telescopic devices on the beam-end and bolt fractures in key members of the main truss.

Damage identification in a wrought iron railway bridge using the inverse analysis of the static stress response under rail traffic loading

  • Sidali Iglouli;Nadir Boumechra;Karim Hamdaoui
    • Smart Structures and Systems
    • /
    • v.32 no.3
    • /
    • pp.153-166
    • /
    • 2023
  • Health monitoring of civil infrastructures, in particular, old bridges that are still in service, has become more than necessary, given the risk that a possible degradation or failure of these infrastructures can induce on the safety of users in addition to the resulting commercial and economic impact. Bridge integrity assessment has attracted significant research efforts over the past forty years with the aim of developing new damage identification methods applicable to real structures. The bridge of Ouled Mimoun (Tlemcen, Algeria) is one of the oldest railway structure in the country. It was built in 1889. This bridge, which is too low with respect to the level of the road, has suffered multiple shocks from various machines that caused considerable damage to its central part. The present work aims to analyze the stability of this bridge by identifying damages and evaluating the damage rate in different parts of the structure on the basis of a finite element model. The applied method is based on an inverse analysis of the normal stress responses that were calculated from the corresponding recorded strains, during the passage of a real train, by means of a set of strain gauges placed on certain elements of the bridge. The results obtained from the inverse analysis made it possible to successfully locate areas that were really damaged and to estimate the damage rate. These results were also used to detect an excessive rigidity in certain elements due to the presence of plates, which were neglected in the numerical reference model. In the case of the continuous bridge monitoring, this developed method will be a very powerful tool as a smart health monitoring system, allowing engineers to take in time decisions in the event of bridge damage.

A Study on Cable Anchor System in Cable-Stayed Railway Bridge (철도용 사장교의 케이블 정착구조에 관한 연구)

  • Kong, Byung-Seung
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1229-1234
    • /
    • 2005
  • Since the 20th century, the business of railway was invaded by the invention of airplanes and vehicles in the field of the transportation of passenger and commercial products, however, in the 21st century, the fervent development of a high speed railway made possible the huge capacity of transporting passengers and commercial freight, so the railway industry is facing a new era of railway revolution. The 200 years old railway tradition includes the history of railway bridges built in areas of river, valley and metropolitan region and in that, the number of constructions of railway bridges that is composed of cable-stayed bridges is increasing as one of the most optimal bridges considering the quality of materials and the span of continuous-welded long rail. Thanks to the minimized effects of the fixed load on the stiffening girder section by delivering the fixed load which is applied to the pylon with the composition of elastic supporting points by using cables and the effective structural system that can throughly resist extra loads in addition to fixed load, the long-extended span of a bridge becomes possible. In this structural system, the load that is applied to the stiffening girder section forms a now pattern and in the process of these load delivery, there will be a necessity to examine the concentration of stress occurred in the cable-anchor system of the cable.

  • PDF

A Study on Stress Analysis of Cable Anchor System in Cable-Stayed Railway Bridge (철도용 사장교의 케이블 정착구조에 관한 형식별 FEM해석 연구)

  • Park, Ji-Ho;Kong, Byung-Seung
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.552-557
    • /
    • 2006
  • Since the 20th century, the business of railway was invaded by the invention of airplanes and vehicles in the field of the transportation of passenger and commercial products, however, in the 21st century, the fervent development of a high-speed railway made possible the huge capacity of transporting passengers and commercial freight, so the railway industry is facing a new era of railway revolution. The 200 years old railway tradition includes the history of railway bridges built in areas of river, valley and metropolitan region and in that, the number of constructions of railway bridges that is composed of cable-stayed bridges is increasing as one of the most optimal bridges considering the quality of materials and the span of continuous-welded long rail. Thanks to the minimized effects of the fixed load on the stiffening girder section by delivering the fixed load which is applied to the pylon with the composition of elastic supporting-points by using cables and the effective structural system that can throughly resist extra loads in addition to fixed load, the long-extended span of a bridge becomes possible. In this structural system, the load that is applied to the stiffening girder section forms a flow pattern and in the process of these load delivery, there will be a necessity to examine the concentration of stress occurred in the cable-anchor system of the cable.

  • PDF

The Dynamics Responses of Railway Bridges Considering the Track Model (궤도모형에 따른 철도교량의 동적응답분석)

  • Kim, Sang-Hyo;Lee, Yong-Seon;Jung, Jun;Lee, Jun-Suk
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.715-720
    • /
    • 2002
  • The dynamic load effects, generated by moving trains, are transferred to the railway bridges through tracks. The dynamic load effects may vary due to the dynamic characteristics of the applied vehicle loads and the railway bridges including the track system. However, the track models have been neglected or simplified by spring elements in the most studies since it is quite complicated to consider the track systems in the dynamic analysis models of railway bridges. In this study track system on railway bridges are modeled using a three-dimensional discrete-support model that can simulate the load carrying behavior of tracks. A 40m simply supported prestressed concrete box-girder system adopted for high-speed railway bridges are modeled for simulation works. The train models are composed of 20 cars for KTX. The dynamic response of railway bridges are found to be affected depending on whether the track model is considered for not. The influencing rate depends on the traveling speed and different wheel-axle distance. The dynamic bridge response decreases remarkably by the track systems around the resonant frequency. Therefore, the resonance effect can be reduced by modifying the track properties in the railway bridge, especially for KTX trains.

  • PDF

Analysis of Design Live Load of Railway Bridge Through Statistical Analysis of WIM Data for High-speed Rail (고속철도 WIM 데이터에 대한 통계분석을 통한 철도교량 설계활하중 분석)

  • Park, Sumin;Yeo, Inho;Paik, Inyeol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.589-597
    • /
    • 2015
  • In this paper, the live load model for the design of high-speed railway bridge is analyzed by statistic and probabilistic methods and the safety level that is given by the load factors of the load combination is analyzed. This study is a part of the development of the limit state design method for the railway bridge, and the train data collected from the Gyeongbu high-speed railway for about one month are utilized. The four different statistical methods are applied to estimate the design load to match the bridge design life and the results are compared. In order to examine the safety level that the design load combination of the railway bridge gives, the reliability indexes are determined and the results are analyzed. The load effect from the current design live load for the high-speed rail bridge which is 0.75 times of the standard train load is came out greater than at least 30-22% that from the estimated load from the measured data. If it is judged based on the ultimate limit state, there is a possibility of additional reduction of the safety factors through the reliability analysis.