• Title/Summary/Keyword: Railway Bridge

Search Result 821, Processing Time 0.026 seconds

A Study on Repair/ Retrofit for Deteriorations of Steel Bridge -Behavior Characteristics of Welded Joint Part of Flange and Repair/Retrofit of Fatigue Crack in Railway Steel Bridge- (강철도교 열화현상에 관한 보수/보강 연구 -강철도교의 플랜지 용접이음부의 거동 특성 및 피로균열 보수보강-)

  • Kyung, Kab Soo;Lee, Sung Jin;Park, Jin Eun;Cha, Cheol Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.613-625
    • /
    • 2012
  • Since railway bridge frequently have a chance of passing train load close to design load, it is necessary to reflect sufficiently fatigue property in early design phase for many structural details. Nevertheless fatigue cracks are reported partly in deck plate girder of railway steel bridge because of the weight and arrangement of axial load acting on railway bridge, the application of improper structural details for fatigue problem etc.. One of main cause for fatigue crack at the welded part of upper flange and web is caused by the eccentricity action of train load due to the difference of center to center spacing between the main girder supporting sleeper and the rail acting train load. For the existing deck plate girder of railway steel bridge, in this study, field survey, field measurement and a series of structural analysis were performed. In addition, the characteristics of structural behavior, the causes and repair/ retrofit of fatigue crack were examined in the target bridge.

Dynamic Analysis for Two plate Girder Railway Bridge Considering Real High Speed Train Loads (실 고속열차하중을 고려한 소수주형 철도교량의 동적해석)

  • Kang, Young-Jong;Kim, Jung-Hun;Shin, Ju-Hwan;Lee, Myeong-Sup
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.960-964
    • /
    • 2011
  • High speed railway structure, contact of vehicle needs to design considering the running stability(dynamic behavior). Also, upper structure has to satisfy design standard about moving load, high speed train(KTX). So, the high speed railway structure has to satisfy the requirement of natural frequency, vertical acceleration on deck, face distortion and vertical displacement considering ride comfort, which is suggested Ho-nam high speed railway design standard. In this study, it was investigated and evaluated to the dynamic behavior for tow plate Girder railway bridge subjected to moving load considering real high speed train loads.

  • PDF

An Analysis of Bending Behavior of Continuous P.S.C Girder Railway Bridge by Using Down-Up Method (주형의 하강ㆍ상승을 이용한 연속 P.S.C빔 철도교의 휨거동 해석)

  • 구민세;위영민;최인식
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.293-298
    • /
    • 2001
  • 2span continuous Prestressed concrete girder railway bridges, span length 21m, 25m, 30m, 35m, that down-up method is applied and that designed to satisfy service load in accordance with design criteria of railway bridge can be dropped in their hight compared with existing simply supported prestressed concrete girder railway bridges. Continuous bridges result in guaranteeing safety against bending behavior by loading the practical railway moving load with each velocity. But the natural frequency of span length 21m is estimated not to satisfy recommended limitation of UIC 776-1R..

  • PDF

Dynamic Analysis for a Double-Rib Arch Railway Bridge Considering Real High Speed Train Loads (실 고속열차하중을 고려한 이중 리브 아치 교량의 동적해석)

  • Kang, Young-Jong;Kim, Jung-Hun;Shin, Ju-Hwan;Lee, Myeong-Sup
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1138-1142
    • /
    • 2010
  • High speed railway structure, contact of vehicle needs to design considering the running stability(dynamic behavior). Also, upper structure has to satisfy design standard about moving load, high speed train(KTX). So, the high speed railway structure has to satisfy the requirement of natural frequency, vertical acceleration on deck, face distortion and vertical displacement considering ride comfort, which is suggested Ho-nam high speed railway design standard. In this study, it was investigated and evaluated to the dynamic behavior for a double-rib arch railway bridge subjected to moving load considering real high speed train loads.

  • PDF

Damage detection of railway bridges using operational vibration data: theory and experimental verifications

  • Azim, Md Riasat;Zhang, Haiyang;Gul, Mustafa
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.2
    • /
    • pp.149-166
    • /
    • 2020
  • This paper presents the results of an experimental investigation on a vibration-based damage identification framework for a steel girder type and a truss bridge based on acceleration responses to operational loading. The method relies on sensor clustering-based time-series analysis of the operational acceleration response of the bridge to the passage of a moving vehicle. The results are presented in terms of Damage Features from each sensor, which are obtained by comparing the actual acceleration response from the sensors to the predicted response from the time-series model. The damage in the bridge is detected by observing the change in damage features of the bridge as structural changes occur in the bridge. The relative severity of the damage can also be quantitatively assessed by observing the magnitude of the changes in the damage features. The experimental results show the potential usefulness of the proposed method for future applications on condition assessment of real-life bridge infrastructures.

Application of Personal Digital Assistant (PDA) for Mobile Bridge Management System (MBMS) (PDA를 이용한 무선교량유지관리(MBMS) Application 개발)

  • 이태식;이동욱;이성현
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.3
    • /
    • pp.223-231
    • /
    • 2004
  • The accumulated BMS data have made it easy to make reasonable decision-making for bride maintenance and repair work. In the developing period of BMS, the bridge management was not easy due to the lack of understanding of BMS and low credibility of the data. In recent years, it has been possible to enhance the credibility of the data and to expand the application scopes of BMS with the efforts of Local Road Construction Offices. The reasonable decision making for bridge management can improve the performance of bridges under the practical constraints such as limited budget. It can then result in the reduction of bridge maintenance budget. This study provides the methodology for the application of mobile internet-based KOBMS for bridge management. The data flow for BMS is the most important factor for decision-making on budget allocation, and this study establishes the basic scheme of the data flow for BMS. The implementation of PDA for BMS may suggest a new paradigm of 'Mobile' in the field of construction management.

Optimization of Two Plate Girders Bridge (2주형 판형교의 최적설계)

  • 김건희;유선미;조선규
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.690-695
    • /
    • 2002
  • Two plate girders bridge has an advantage for execution of works and quality control because of its simplicity of super-structure caused by decreasing in amount of members and also is distinguished as aesthetic bridge type. Recently this has been adopted for structure of highway as well railway and introduced into domestic. In order to plan or design two plate girders bridge more rationably, it is necessary to comprehend its structural behavior as well as to consider the critical resign factors. Thus, in this study the formulation of optimum design for two plate girders bridge is proposed and the critical resign variables ani restraints are considered and founded by caring out optimum design. The objective function of optimization is formulated as a minimum cost design problem. And the thickness and length of I-shaped section are decided as resign variables. The design constraints are formulated based on Design Criteria for Railroad(Bridges). By comparing the optimum results with those of the conventional resign, the effectiveness of proposed optimum design formulation is investigated. From the results, the way to do optimum design of two plate girders bridge is suggested.

  • PDF

Evaluation of the Structural Behavior Characteristics and Long Term Durability for Transition Track Systems in Railway Bridge Deck Ends (철도교량 단부 전환부 궤도시스템의 구조적 거동특성 및 장기 내구성능 분석)

  • Lee, Kwangdo;Jeong, Incheol;Choi, Jungyoul;Park, Yonggul
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.4
    • /
    • pp.260-269
    • /
    • 2014
  • Transition tracks are an alternative for enhancing the long-term serviceability and durability of concrete track components in railway bridges. The goal of this paper is to investigate the structural behavior for transition track systems of railway bridge deck ends. In this study, the structural behavior of transition tracks such as the variations in static, dynamic, and fatigue behaviors and dynamic properties (natural frequency and damping ratio) are assessed and compared through performing loading tests and finite element analyses using actual vehicle impact loadings. As a result, it is found that the structural behavior of the transition track system is expected to satisfy the actual vehicle impact loading, and the variation in the neutral axis and dynamic characteristics are not affected by the fatigue loading. Therefore, it is inferred that the structural capacity and long-term durability of the transition track system is proven.

Field Test on the Rigidities of Substructures of High Speed Railway Bridges (고속철도교량 하부구조 강성도에 관한 현장실험)

  • Chin Won-Jong;Choi Eun-Suk;Kwark Jong-Won;Kang Jae-Yoon;Cho Jeong-Rae;Kim Byung-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.118-124
    • /
    • 2006
  • SThe rigidities of bridge substructures are the important data in the rail-bridge interaction analysis in Korean High -Speed Railway. This experimental study is being performed because of followings. 1) More correct longitudinal stiffness of the structure including substructure should be considered in the calculation of stresses in rails. 2) There are many uncertainties in the design and construction of the piers and foundations. 3) Actual guideline for the rigidities of piers and foundations in the design is necessary. 4) Measurement on the rigidity of pier according to the types of piers, foundations and soil-conditions is needed. Curve for estimating the total rigidity of substructure will be obtained through this and further experimental studies. It may be used in the analysis of Korean High-Speed Railway bridge and then, longitudinal stresses in the rails can be estimated more accurately. One pair of piers, which consist of pot-bearing for fixed support and pad-bearing for movable support, are loaded by steel frame devices with steel wire ropes and hydraulic jack. The responses which are measured at each loading stages in those field tests are displacements and tilted angles on the top and bottom of piers. This study is being performed testing and analysis about several piers in the construction field.

Dynamic Behaviors of Skewed Bridge with PSC Girders Wrapped by Steel Plate

  • Rhee, In-Kyu;Kim, Lee-Hyeon;Kim, Hyun-Min;Lee, Joo-Beom
    • International Journal of Railway
    • /
    • v.3 no.3
    • /
    • pp.83-89
    • /
    • 2010
  • This paper attempts to extract the fundamental dynamic properties, i.e. natural frequencies, damping ratios of the 48 m-long, $20^{\circ}$ skewed real bridge with PSC girders wrapped by a steel plate. The forced vibration test is achieved by mounting 12 Hz-capacity of artificial oscillator on the top of bridge deck. The acceleration histories at the 9 different locations of deck surface are recorded using accelerometors. From this full-scaled vibration test, the two possible resonance frequencies are detected at 2.38 Hz and 9.86 Hz of the skewed bridge deck by sweeping a beating frequency up to 12 Hz. The absolute acceleration/energy exhibits much higher in case of higher-order twist mode, 9.86 Hz due to the skewness of bridge deck which leads asymmetric situation of vibration. This implies the test bridge is under swinging vertically in fundamental flexure mode while the bridge is also flickered up and down laterally at 9.86 Hz. This is probably by asymmetric geometry of skewed deck. A detailed 3D beam-shell bridge models using finite elements are performed under a series of train loads for modal dynamic analyses. Thereby, the effect of skewness is examined to clarify the lateral flickering caused by asymmetrical geometry of bridge deck.

  • PDF