• Title/Summary/Keyword: Rail road car

Search Result 12, Processing Time 0.025 seconds

Reliability Assessment and Accelerated Life Prediction of Gas Welded Joint in the Rail Road Car Body (1. Plug and Ring Type) (철도차량 차체 가스용접 이음재의 가속수명예측과 신뢰도 평가)

  • Baek, Seung-Yeb
    • Journal of Welding and Joining
    • /
    • v.28 no.1
    • /
    • pp.77-85
    • /
    • 2010
  • Stainless steel sheets are widely used as the structure material for the railroad cars and the commercial vehicles. These kinds structures used stainless steel sheets are commonly fabricated by using the gas welding. Gas welding is very important and useful technology in fabrication of a railroad car and vehicles structure.However fatigue strength of the gas welded joints is considerably lower than parent metal due to stress concentration at the weld, fatigue strength evaluation of gas welded joints are very important to evaluate the reliability and durability of railroad cars and to establish a criterion of long life fatigue design. In this paper, $({\Delta}{\sigma}_a)_R-N_f$ curve were obtained by fatigue tests. Using these results, the accelerated life test(ALT) was conducted. From the experimental results, an acceleration model was derived and acceleration factors are estimated. So it is intended to obtain the useful information for the fatigue lifetime of plug and ring gas welded joints and data analysis by statistic reliability method, to save time and cost, and to develop optimum accelerated life prediction plans.

Exhaust Gas Recirculation System Applied to 56 kW Off-Road Vehicle to Satisfy the Tier 4 Interim Emission Regulation (Tier 4 Interim 배기규제 만족을 위한 56kW급 오프로드 차량 EGR 적용에 관한 연구)

  • Kang, Jeong-Ho;Han, Joon-Sup;Chung, Jae-Woo;Jeong, Gun-Woo;Cho, Gyu-Baek;Lim, Jung-Ho;Pyo, Su-Kang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.217-224
    • /
    • 2012
  • In general, transportation sources include both on-road vehicles and off-road equipment. Off-road vehicles have usually used diesel engines, which have the disadvantage of high NOx emission. Common rail direct injection (CRDI) and after-treatment systems have been applied to meet the exhaust gas emission regulations for diesel vehicles. In the present, agricultural machinery has satisfied the Tier 3 emission regulations by using waste gate turbocharger (WGT) and internal exhaust gas recirculation (EGR). In this paper, the combustion and emission characteristics of an EGR system applied to a 56kW off-road vehicle in non-road transient cycle (NRTC) mode have been investigated. The EGR map was made from foundation experiments determining the EGR duty for all engine operating conditions, and then this map was applied to the NRTC mode. Consequently, the NOx emission was reduced by the EGR system, and the Tier 4 interim emission regulations were satisfied by using both the EGR system and an after-treatment system.

A Study of Dynamic Analysis of Wheel Force Spectrum between Road and PSC Bridge tracks for the KTX Safety Evaluation (KTX 차량의 주행안정성 평가를 위한 노상과 PSC 교량 상의 윤하중분포 동적해석 연구)

  • Lee, Dong-Jun;Oh, Soon-Taek;Sim, Young-Woo;Yun, Jun-Kwan;Kim, Han-Su
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.793-799
    • /
    • 2011
  • A comprehensive analysis of wheel force spectrum is conducted to provide the KTX safety evaluation with structural behaviour of Pre-Stressed Concrete (PSC) box bridge due to various high speeds. The wheel spectrum for KTX locomotive running over road and PSC bridge tracks is compared using irregular track responses with numerical models of 170m approach road track and 40m span length of PSC box bridge The high-speed railway locomotive is used as 38-degree of freedom system. Three displacements (vertical, lateral, and longitudinal) and three rotational components (pitching, rolling, and yawing) for one car-body and two bogies are considered in the 38-degree of freedom model. Three dimensional frame element of finite element method (FEM) is used to model of the simply supported PSC box bridge. The irregulation of rail-way is derived using the experiential spectrum density function under assumption of twelve level tracks conditions based on the normal probability procedure. The dynamic analyses by Runge-Kutta method which are able to analyze the high frequency wheel force spectrum. A dynamic behaviour of KTX due to high speeds until 450km/h developing speed with relative time is analysed and compared the characteristics running over the road and PSC box bridge tracks. Finally, the KTX integrated evaluation method of safety between high speed train and bridge is presented.

  • PDF

Wind loads on a moving vehicle-bridge deck system by wind-tunnel model test

  • Li, Yongle;Hu, Peng;Xu, You-Lin;Zhang, Mingjin;Liao, Haili
    • Wind and Structures
    • /
    • v.19 no.2
    • /
    • pp.145-167
    • /
    • 2014
  • Wind-vehicle-bridge (WVB) interaction can be regarded as a coupled vibration system. Aerodynamic forces and moment on vehicles and bridge decks play an important role in the vibration analysis of the coupled WVB system. High-speed vehicle motion has certain effects on the aerodynamic characteristics of a vehicle-bridge system under crosswinds, but it is not taken into account in most previous studies. In this study, a new testing system with a moving vehicle model was developed to directly measure the aerodynamic forces and moment on the vehicle and bridge deck when the vehicle model moved on the bridge deck under crosswinds in a large wind tunnel. The testing system, with a total length of 18.0 m, consisted of three main parts: vehicle-bridge model system, motion system and signal measuring system. The wind speed, vehicle speed, test objects and relative position of the vehicle to the bridge deck could be easily altered for different test cases. The aerodynamic forces and moment on the moving vehicle and bridge deck were measured utilizing the new testing system. The effects of the vehicle speed, wind yaw angle, rail track position and vehicle type on the aerodynamic characteristics of the vehicle and bridge deck were investigated. In addition, a data processing method was proposed according to the characteristics of the dynamic testing signals to determine the variations of aerodynamic forces and moment on the moving vehicle and bridge deck. Three-car and single-car models were employed as the moving rail vehicle model and road vehicle model, respectively. The results indicate that the drag and lift coefficients of the vehicle tend to increase with the increase of the vehicle speed and the decrease of the resultant wind yaw angle and that the vehicle speed has more significant effect on the aerodynamic coefficients of the single-car model than on those of the three-car model. This study also reveals that the aerodynamic coefficients of the vehicle and bridge deck are strongly influenced by the rail track positions, while the aerodynamic coefficients of the bridge deck are insensitive to the vehicle speed or resultant wind yaw angle.

An Analysis for the Characteristics of Railroad Central Control Center and the Duty of the Operator (Focused on AREX C.C.C.) (철도 종합관제실 특성 및 관제사의 직무 분석 (공항철도 종합관제실을 중심으로))

  • Kim, Jung-Gon;Lee, Won-Young
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1955-1963
    • /
    • 2008
  • How can a train move? While a car is driven by a driver who gets the traffic information and takes the road, a train is operated on the designated(or predetermined) track by the operator or the control center. There have been a great deal of changes and evolutions in the railroad environment. Along with these transitions, there have been also a considerable amount of changes in the control center. There has been no detailed analysis for the control center even though its importance has been recognized. It goes without saying that CCC(Central Control Center)'s importance as the core of the train driving system. Such an importance is true for the automated driving system such as the light rail system. Therefore this paper analyzes the CCC of AREX(Airport Express) from the various aspects, i.e., organization, personnel assignment, the way of working, qualification and job analysis for the operator.

  • PDF

Does High-Speed Rail Have Superiority over Motorway in Terms of CO2 Emission? (고속철도는 고속도로에 비하여 저탄소 친환경적인가?)

  • Kang, Taeseok;Chang, Hyunho
    • International Journal of Highway Engineering
    • /
    • v.18 no.5
    • /
    • pp.83-93
    • /
    • 2016
  • PURPOSES : The aim of this article is to compare and identify eco-friendly competitiveness between (regional) motorway and high-speed rail(HSR) from the perspective of $CO_2$ emission in the Republic of Korea. METHODS : In order for an analysis of low-carbon competitiveness between the two modes, $CO_2e$ emission, $CO_2eppk$ (equivalent $CO_2$ gram per passenger kilometer), is employed as a comparison index. As for HSR, the index is calculated based on the passenger transport data and the gross of $CO_2e$ produced by Kyungbu high-speed line in 2013. Additionally, the gross of $CO_2e$ is computed by the greenhouse gas emission factors of domestic electricity generation mix. Regarding the index of motorway, it is directly calculated using both the official $CO_2e$ emission factor and the passenger-car occupancy of motorway. RESULTS : The results revealed, in the case of inter-regional transport, that the $CO_2e$ emission of displacement-based cars is 54.9% less than that of HSR, as the domestic electric power systems heavily relies on the thermal power plants over 66%. Note that internal combustion engines commonly used for vehicles are more energy-efficient than steam-driven turbines usually utilized for thermal power generation. CONCLUSIONS : It can be seen, at the very least in our study, that HSR has no superiority over motorway in the case of $CO_2e$ emission under the situations of domestic electricity generation mix. In addition, advanced eco-friendly vehicles have strong advantages over HSR. Therefore, all-out efforts should be made to develop and harvest renewable energy sources in order to achieve low-carbon HSR, sparing fossil fuels.

U-LBS : Precise Location Data Through a Car Crash Location System (U-LBS : 정밀 위치 데이터를 통한 차량 충돌 사고 위치 확인 시스템)

  • Moon, Seung-Jin;Lee, Yong-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1150-1156
    • /
    • 2009
  • The spread of wireless Internet technology development and applications with location information in the form of location-based services are more varied. In particular, where you recognize the location of objects such as people and things, and to provide valuable services based on ubiquitous, location-based services (Ubiquitous Location Based Services: u-LBS) is emerging as an important service. In this paper precise location data to the car crash through the location and offers related service system. In this paper the precise location tracking proposed by the concept of the Rail, road, to extract the location Data Matching Data and the current location is obtained. System used in GPS Packet and information about the location of the vehicle collision and the collision time, the vehicle consists of NodeID is about. Using these data, a packet is to be created when the conflict between vehicles in the vehicle will be sent to Gateway. Gateway to the packets that were sent from the Server to determine whether the conflict is that in an emergency situation, Emergency Center for location information and let me know whether or not the conflict will be measured. Also, for those on the outside of an emergency such as a family related to the wireless terminal wireless (PDA, cell phone) is to let me know. Server get into the conflict that was configured to store information on the Database. Additionally, the proposed u-LBS system to verify the validity of the experiment was performed.

Traffic Flow Sensing Using Wireless Signals

  • Duan, Xuting;Jiang, Hang;Tian, Daxin;Zhou, Jianshan;Zhou, Gang;E, Wenjuan;Sun, Yafu;Xia, Shudong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3858-3874
    • /
    • 2021
  • As an essential part of the urban transportation system, precise perception of the traffic flow parameters at the traffic signal intersection ensures traffic safety and fully improves the intersection's capacity. Traditional detection methods of road traffic flow parameter can be divided into the micro and the macro. The microscopic detection methods include geomagnetic induction coil technology, aerial detection technology based on the unmanned aerial vehicles (UAV) and camera video detection technology based on the fixed scene. The macroscopic detection methods include floating car data analysis technology. All the above methods have their advantages and disadvantages. Recently, indoor location methods based on wireless signals have attracted wide attention due to their applicability and low cost. This paper extends the wireless signal indoor location method to the outdoor intersection scene for traffic flow parameter estimation. In this paper, the detection scene is constructed at the intersection based on the received signal strength indication (RSSI) ranging technology extracted from the wireless signal. We extracted the RSSI data from the wireless signals sent to the road side unit (RSU) by the vehicle nodes, calibrated the RSSI ranging model, and finally obtained the traffic flow parameters of the intersection entrance road. We measured the average speed of traffic flow through multiple simulation experiments, the trajectory of traffic flow, and the spatiotemporal map at a single intersection inlet. Finally, we obtained the queue length of the inlet lane at the intersection. The simulation results of the experiment show that the RSSI ranging positioning method based on wireless signals can accurately estimate the traffic flow parameters at the intersection, which also provides a foundation for accurately estimating the traffic flow state in the future era of the Internet of Vehicles.

A Study on Safety Improvement of Safety Devices at Entrance of Expressway Tunnels (터널 입구부 안전시설물 안전성 증대방안 연구)

  • Lee, Jeom-Ho;Kim, Jang-Wook;Kim, Deok-Soo;Lee, Soo-Beom
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.235-245
    • /
    • 2008
  • Since rapidly increase of tunnel with increasing of expressway, the study on safety improvement of safety device at entrance of expressway tunnels is necessary. The existence of tunnel occurs more speed reduction than an upward slope by itself, the collision accident of tunnel entrance causes heavier damage than that of general accident on the road. So, many kinds of safety devices such as poly-ethylene barrier, guard-rail are placed on the road side. But these devices affect the drivers as an obstacle. Although there are various safety devices that are placed at tunnel entrance, this study is related to following 2-cases. One is that the poly-ethylene barrier is placed and the other is that a safety devices is not placed. The reason that these two cases are selected, is that poly-ethylene barrier is usually placed at many tunnel entrances and safety devices can affect the drivers as an obstacle. This study is related to the difference of right-hand side clearance between inside tunnel and outside tunnel, too. The average difference observed car speed and VDS(vehicle detect system) speed nearby the tunnel is analysed. Through the statistical analysis of the average difference, this study suggests an alternatives on safety improvement of safety devices at entrance of expressway tunnels. It is concluded that the small difference of right-hand side clearance is desirable to drivers when a poly-ethylene barrier is placed. And when the difference of right-hand side clearance is large, no safety devices is desirable, and when the difference of right-hand side clearance is small, poly-ethylene barrier should be placed to improve safety.

  • PDF

Technical Study on Possibility of an Express Service Wide Area Railway (광역철도 노선의 급행화 가능성에 대한 기술적 검토)

  • Park, Jung Hyun
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.5
    • /
    • pp.612-624
    • /
    • 2017
  • As the existing metropolitan area metropolitan railway operates on a one-to-one basis, which leads to long travel times, its competitiveness with other means of transportation is deteriorating. Since there is a limit to attracting road traffic by rail, there is a continuing societal demand to expand express train service. Especially in the northern and the southwestern parts of the metropolitan area, a public transportation network system with express function, connecting to the city center of Seoul, is needed because of the social cost of the increase of traffic congestion and the increase of the travel time. The most efficient express service in Korea is Seoul Subway Line 9, which runs in 27 minutes from Gimpo Airport to the high speed terminal; this is a 40% shorter time compared to 44 minutes by car; the congestion in this area is up to 240%, so the preference for this train is quite high. The technical results of this study are expected to contribute to the implementation of an express service metropolitan railway.