• Title/Summary/Keyword: Rail Road Bridge

Search Result 24, Processing Time 0.021 seconds

Damage identification in a wrought iron railway bridge using the inverse analysis of the static stress response under rail traffic loading

  • Sidali Iglouli;Nadir Boumechra;Karim Hamdaoui
    • Smart Structures and Systems
    • /
    • v.32 no.3
    • /
    • pp.153-166
    • /
    • 2023
  • Health monitoring of civil infrastructures, in particular, old bridges that are still in service, has become more than necessary, given the risk that a possible degradation or failure of these infrastructures can induce on the safety of users in addition to the resulting commercial and economic impact. Bridge integrity assessment has attracted significant research efforts over the past forty years with the aim of developing new damage identification methods applicable to real structures. The bridge of Ouled Mimoun (Tlemcen, Algeria) is one of the oldest railway structure in the country. It was built in 1889. This bridge, which is too low with respect to the level of the road, has suffered multiple shocks from various machines that caused considerable damage to its central part. The present work aims to analyze the stability of this bridge by identifying damages and evaluating the damage rate in different parts of the structure on the basis of a finite element model. The applied method is based on an inverse analysis of the normal stress responses that were calculated from the corresponding recorded strains, during the passage of a real train, by means of a set of strain gauges placed on certain elements of the bridge. The results obtained from the inverse analysis made it possible to successfully locate areas that were really damaged and to estimate the damage rate. These results were also used to detect an excessive rigidity in certain elements due to the presence of plates, which were neglected in the numerical reference model. In the case of the continuous bridge monitoring, this developed method will be a very powerful tool as a smart health monitoring system, allowing engineers to take in time decisions in the event of bridge damage.

Flexural Reliability Assessment of PSC-I Girder Rail Bridge Under Operation (사용중 PSC-I 거더 철도 교량의 휨모멘트에 대한 신뢰도 분석)

  • Kim, Ki Hyun;Yeo, Inho;Sim, Hyoung-Bo
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.187-194
    • /
    • 2016
  • It is necessary to determine reliability indexes of existing railway bridges prior to setting up a proper target reliability index that can be used to introduce a reliability based limit state design method to design practice. Reliability is evaluated for a six PSC-I girder railway bridge, which is one of many representative types of double-track railway bridges. The reliability assessment is carried out for an edge girder subjected to bending moment. In the assessment, the flexural resistance and the fixed-load effect were obtained using existing statistical values from previous research on the introduction of limit state design to road bridge design. On the other hand, the live-load effect was determined using statistical values obtained from field measurement for the Joong-ang corridor, on which heavy freight trains are frequently passing. The reliability assessment is performed by AFOSM(Advanced First Order Second Moment method) for the limit state equation, and a sensitivity analysis for the reliability is performed for each factor of the load and resistance effects.

Durability Evaluation of Hybrid Expansion Joint System with Improved Replacement (보수성을 개선한 복합형 신축이음장치(HRS) 내구성 평가)

  • Jung Woo Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.1-7
    • /
    • 2023
  • Durability was evaluated by performing a full-scale vertical load fatigue test and a wheel load performance test on the HRS, which reduces the replacement time of the existing expansion joint and improves serviceability to allow partial replacement by lane. As a result of the vertical load fatigue test, the maximum stress of the rail-type expansion joint is 170 MPa, which is about 47.8% of the yield strength of the HRS expansion joint rail 355 MPa. The vertical load fatigue test of the HRS expansion joint with improved serviceability set the size and load of the load plate according to the road bridge design standards, did not show any fracture behavior in the vertical load fatigue test and the wheel load performance test 2 million times, and its durability and safety were verified.

A Feasibility Study of the K-LandBridge through a Linear Programming Model of Minimum Transport Costs (최소운송비용의 선형계획모형을 통한 K-LandBridge의 타당성 연구)

  • Koh, Yong Ki;Seo, Su Wan;Na, Jung Ho
    • Journal of Korea Port Economic Association
    • /
    • v.32 no.3
    • /
    • pp.95-108
    • /
    • 2016
  • China has recently advocated a national strategy called "One Belt One Road" and transferred to execution to refine it into detailed action plans and has continued to fix the complement. However, the Korean Peninsula, including the North Korea remains could not be included at all in the Chinese development policy and framework in terms of the International Logistics. Currently it is raised between Korea-China rail ferry system again and that is when we need to make effective policy development on international multimodal transport system in Northeast Asia. This paper introduces the K-LB (Korea LandBridge) as its execution plan and conducted a feasibility study on this. K-LB consists of a Korea-Russian train ferry system based in Pohang Yeongil New Port(light-wing) and a Korea-China train ferry system based in Saemangeum New Port(left-wing). These two wings are linked to the existing rail system in Korea. This study is convinced that the K-LB is an effective international logistics system in the current terms and conditions and also demonstrated that it is feasible to introduce th K-LB on the peninsula. More strictly speaking, through a linear programming under objective function that minimize the transport cost quantified prior to demonstrate the feasibility, the available ranges and conditions for the transportation costs that are ensured the effectiveness of the K-LB are presented as results. According to the results, if the transport cost of K-LB is cheaper about 34.5% than that of sea transport such as container transport, the object goods may be transported by K-LB on this route. It means that the K-LB system has a competitive advantage due to more rapid customs clearance as well as omitted loading and unloading procedures over container transportation system. It also noted that the threshold level may not be large. Therefore, K-LB has competitive enough to prove its introduction in the Northeast Asian logistics system.