• 제목/요약/키워드: Raft foundation

검색결과 103건 처리시간 0.023초

Gravel Mat로 보강된 말뚝지지 전면기초의 실내모형실험 (Laboratory Test of Piled-Raft Foundation Improved by Gravel Mat)

  • 서영교;이정훈
    • 한국해양공학회지
    • /
    • 제25권2호
    • /
    • pp.47-54
    • /
    • 2011
  • A piled raft foundation is one of the systems used to reduce the settlement of structures. However, the general design method for a piled raft foundation system assumes that the piles only support external loads, which exclude the bearing capacity of the raft itself. In this study, an experimental model test was performed to evaluate the raft capacity for the external load on the sand. Additionally, a part of the sandy ground under the raft was replaced with a gravel mat to reinforce the piled raft foundation system and increase the bearing capacity. Then, parametric studies of the reinforced ground were performed to determine the displacement and load-sharing ratio of the piled raft foundation system.

Analysis of the piled raft for three load patterns: A parametric study

  • Chore, H.S.;Siddiqui, M.J.
    • Coupled systems mechanics
    • /
    • 제2권3호
    • /
    • pp.289-302
    • /
    • 2013
  • The piled raft is a geotechnical construction, consisting of the three elements-piles, raft and the soil, that is applied for the foundation of a tall buildings in an increasing number. The piled rafts nowadays are preferred as the foundation to reduce the overall and differential settlements; and also, provides an economical foundation option for circumstances where the performance of the raft alone does not satisfy the design requirements. The finite element analysis of the piled raft foundation is presented in this paper. The numerical procedure is programmed into finite element based software SAFE in order to conduct the parametric study wherein soil modulus and raft thickness is varied for constant pile diameter. The problems of piled raft for three different load patterns as considered in the available literature (Sawant et al. 2012) are analyzed here using SAFE. The results obtained for load pattern-I using SAFE are compared with those obtained by Sawant et al. (2012). The fair agreement is observed in the results which demonstrate the accuracy of the procedure employed in the present investigation. Further, substantial reduction in maximum deflections and moments are found in piled raft as compared to that in raft. The reduction in deflections is observed with increase in raft thickness and soil modulus. The decrease in maximum moments with increase in soil modulus is seen in raft whereas increase in maximum moments is seen in piled raft. The raft thickness and soil modulus affects the response of the type of the foundation considered in the present investigation.

Piled Raft 기초 적용사례 분석 (A Case Study of the Piled Raft Foundation)

  • 김홍택;강인규;최효범;박시삼
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.597-604
    • /
    • 2002
  • The piled raft foundation Is an innovative design concept to reduce both the maximum settlement and differential settlements caused by concentrated building loads and load eccentricities, and also to reduce the bending moments of the raft. The main concern given in the design of piled raft foundations is proper judgments both of relative proportions of loads carried by the raft and piles, and of the effect of the pile support on the maximum and differential settlements In the present study, the piled raft foundation used in the foundation system of Richensia Building at Youido, Seoul is introduced and is carried out analyzing the results of field tests such as plate load tests, large plate load test, pile load test, and piled raft load test.

  • PDF

Assessment the effect of pile intervals on settlement and bending moment raft analysis of piled raft foundations

  • Ghiasi, Vahed;Moradi, Mobin
    • Geomechanics and Engineering
    • /
    • 제16권2호
    • /
    • pp.187-194
    • /
    • 2018
  • Application the pile group foundation to reduce overall settlement of the foundation and also avoid a very fruitful settlement of foundations, inconsistent was carried out. In such a case, in event that the Foundation, not as a mere pile group, which as a system consisting of a broad foundation with pile Group, economic design criteria will be provided in spite of high safety. A new approach in the design of the Foundation can be introduced as the piles are just a tool to improve the parameters of soil hardness; that it can work with detachable piles from raft. Centralized arrangement of piles as the most optimal layout of piles in reducing inconsistent settlement, which is the lowest value of resulting layout in this differential settlement. Using the combination of piles connected and disconnected to form the raft, bending moment created in the raft is reduced. It also concentrated arrangements have greatest effect in reducing amount of moment applied to the raft.

Numerical study on the influence of embedment footing and vertical load on lateral load sharing in piled raft foundations

  • Sommart Swasdi;Tanan Chub-Uppakarn;Thanakorn Chompoorat;Worathep Sae-Long
    • Geomechanics and Engineering
    • /
    • 제36권6호
    • /
    • pp.545-561
    • /
    • 2024
  • Piled raft foundation has become widely used in the recent years because it can increase bearing capacity of foundation with control settlement. The design for a piled raft in terms vertical load and lateral load need to understands contribution load behavior to raft and pile in piled raft foundation system. The load-bearing behavior of the piled raft, especially concerning lateral loads, is highly complex and challenge to analyze. The complex mechanism of piled rafts can be clarified by using three dimensional (3-D) Finite Element Method (FEM). Therefore, this paper focuses on free-standing head pile group, on-ground piled raft, and embedded raft for the piled raft foundation systems. The lateral resistant of piled raft foundation was investigated in terms of relationship between vertical load, lateral load and displacement, as well as the lateral load sharing of the raft. The results show that both vertical load and raft position significantly impact the lateral load capacity of the piled raft, especially when the vertical load increases and the raft embeds into the soil. On the same condition of vertical settlement and lateral displacement, piled raft experiences a substantial demonstrates a higher capacity for lateral load sharing compared to the on-ground raft. Ultimately, regarding design considerations, the piled raft can reliably support lateral loads while exhibiting behavior within the elastic range, in which it is safe to use.

연약점토지반 Piled-Raft 기초의 김해지역에서의 적용성 (Piled-Raft Foundation on Soft Clay in Gimhae Area)

  • 서영교
    • 한국해양공학회지
    • /
    • 제18권3호
    • /
    • pp.20-25
    • /
    • 2004
  • For the structural foundation above the soft clay layer conditions, the design charts are first presented for the evaluation of both bearing capacity and total settlement in the basic raft foundation system. wad settlement relationship curves are used to evaluate the ultimate soil bearing capacity. The total settlement is evaluated by applying various traditional factors into the ultimate bearing capacity. Then, the parametric studies are carried out for the piled-raft foundation system. In the numerical analysis, the elasto-pastic finite element model(Mohr-Coulomb model) is used to present the foundation response and design charts, which enable the determination of the raft size and pile length and spacing.

지반조건이 Piled Raft 기초의 거동에 미치는 영향 평가를 위한 매개변수 연구 (A Parametric Study to Estimate the Behavior of a Piled Raft Foundation Influenced by Ground Conditions)

  • 유광호;정연학
    • 한국지반공학회논문집
    • /
    • 제32권8호
    • /
    • pp.35-46
    • /
    • 2016
  • 본 연구에서는 지반조건에 따른 실제 piled raft 기초의 거동을 실규모 시험을 통해 분석하기가 어려운 점을 감안하여 수치해석을 이용한 민감도분석을 수행하고자 하였다. 수치해석에 사용한 프로그램은 유한차분법 기반의 FLAC 3D이다. 말뚝의 수치해석 모델링은 FLAC의 구조요소 중 하나인 말뚝요소를 사용하여 모델링하였고, 지반과 래프트는 연속체 요소를 이용하여 모사하였다. 말뚝의 배열은 $3{\times}3$으로 고정하고 말뚝직경, 말뚝길이, 말뚝간격 그리고 지반조건을 민감도 매개변수로 선정하고 상관관계를 규명하였다. 그 결과, 말뚝직경이 크고 말뚝의 길이가 길수록, 그리고 말뚝의 간격이 넓을수록 piled raft 기초의 전체 지지력은 증가하는 것으로 나타났다. 그러나 지반조건에 따라 말뚝간격이 일정 간격 이상이 될 경우, piled raft 기초의 거동이 래프트만으로 지지되는 얕은기초와 유사한 거동을 보였다. 또한 지반조건이 좋아질수록, piled raft 기초의 전체 지지력은 증가함을 확인할 수 있었다.

국내외 초고층 건축물의 대단면 매트기초 시공사례와 분석 (Case Study on Mega Foundations of Domestic and Foreign Super High-Rise Buildings)

  • 박영석;이해출;김경민;조창식;임홍철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2010년도 춘계 학술논문 발표대회 1부
    • /
    • pp.17-19
    • /
    • 2010
  • This paper describes the possibility of the raft thickness reduction for mega foundations system of super high-rise buildings through a case study on domestic and foreign super high-rise buildings. In case of super high-rise buildings, the size of foundations, especially raft becomes wider and deeper because of heavy upper load. It is difficult to pour concrete of this kind of mega foundation, and cracks by hydration heat could happen. Therefore, there are several ways to reduce the raft thickness of mega foundations. Piled-raft could be the one because moment and shear load that the raft subjects on by soil reaction are lower. The effect of the piled-raft foundation on the raft thickness reduction could be confirmed by comparison of super high-rise buildings with pile, piled-raft and mat foundation. Furthermore, it was showed that the raft thickness could be more reduced by locating piles right under the vertical members of super structures.

  • PDF

Lateral load sharing and response of piled raft foundation in cohesionless medium: An experimental approach

  • Dinesh Kumar Malviya;Manojit Samanta
    • Geomechanics and Engineering
    • /
    • 제38권2호
    • /
    • pp.139-155
    • /
    • 2024
  • The piled raft foundations are subjected to lateral loading under the action of wind and earthquake loads. Their bearing behavior and flexural responses under these loadings are of prime concern for researchers and practitioners. The insufficient experimental studies on piled rafts subjected to lateral loading lead to a limited understanding of this foundation system. Lateral load sharing between pile and raft in a laterally loaded piled raft is scarce in literature. In the present study, lateral load-displacement, load sharing, bending moment distribution, and raft inclinations of the piled raft foundations have been discussed through an instrumented scaled down model test in 1 g condition. The contribution of raft in a laterally loaded piled raft has been evaluated from the responses of pile group and piled raft foundations attributing a variety of influential system parameters such as pile spacing, slenderness ratio, group area ratio, and raft embedment. The study shows that the raft contributes 28-49% to the overall lateral capacity of the piled raft foundation. The results show that the front pile experiences 20-66% higher bending moments in comparison to the back pile under different conditions in the pile group and piled raft. The piles in the piled raft exhibit lower bending moments in the range of 45-50% as compared to piles in the pile group. The raft inclination in the piled raft is 30-70% less as compared to the pile group foundation. The lateral load-displacement and bending moment distribution in piles of the single pile, pile group, and piled raft has been presented to compare their bearing behavior and flexural responses subjected to lateral loading conditions. This study provides substantial technical aid for the understanding of piled rafts in onshore and offshore structures to withstand lateral loadings, such as those induced by wind and earthquake loads.

샌드쿠션을 고려한 말뚝지지 전면기초의 수치해석 (Numerical Analysis of Piled-Raft Foundations Considering the Effects of Sand Cushion)

  • 김남익;서영교
    • 한국해양공학회지
    • /
    • 제21권5호
    • /
    • pp.25-32
    • /
    • 2007
  • The piled-raft foundation, a new design concept, is one of the most effective kinds of foundation for reducing settlement of structures. An alternative piled-raft system with disconnection cap and a sand cushion between the pile and raft was also investigated to compare the influence of ultimate bearing capacity and settlement. Load-settlement relation curves were used to evaluate the ultimate bearing capacity. In the numerical analyses, a plane strain elasto-plastic finite element model (Mohr-Coulomb model) was used to present the response of the piled-raft foundation.