• Title/Summary/Keyword: Radon-thoron exhalation rate

Search Result 3, Processing Time 0.019 seconds

Estimation of natural radionuclide and exhalation rates of environmental radioactive pollutants from the soil of northern India

  • Devi, Vandana;Chauhan, Rishi Pal
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1289-1296
    • /
    • 2020
  • The estimation of radioactivity level is vital for population health risk assessment and geological point of view and can be evaluated as rate of exhalation and source concentration (226Ra, 232Th and 40K). The present study deals with the soil samples for investigation of radionuclides content and exhalation rates of radon -thoron gas from different sites in northern Haryana, India. Absorbed dose and associated index estimated in the present study are the measures of environmental radioactivity to inhalation dose. Effective doses received by different tissues and organs by considering different occupancy and conditions are also measured. Exhalation rates of radon and thoron are measured with active scintillation monitors based on alpha spectroscopy namely scintillation radon (SRM) and thoron (STM) monitors respectively. Sample height was optimized before measurement of thoron exhalation rate using STM. Average values of radon and thoron exhalation are found 16.6 ± 0.7 mBqkg-1h-1 and 132.1 ± 2.6 mBqm-2s-1 respectively. Also, a simple approach was also adopted, to evaluate the thoron exhalation which accomplished a lot of challenges, the results are compared with the data obtained experimentally. The study is useful in the nationwide mapping of radon and thoron exhalation rates for understanding the environmental radioactivity status.

Indoor radon and thoron from building materials: Analysis of humidity, air exchange rate, and dose assessment

  • Syuryavin, Ahmad Ciptadi;Park, Seongjin;Nirwono, Muttaqin Margo;Lee, Sang Hoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2370-2378
    • /
    • 2020
  • Building materials contribute significantly to the indoor radon and thoron levels. Therefore, parameters that influence the exhalation rates of radon and thoron from building material need to be analyzed closely. As a preliminary study, the effects of humidity on exhalation rates were measured using a system with an accumulation chamber and RAD7 detector for Korean brick, Korean soil, and Indonesian brick. Resulting doses to a person who resides in a room constructed from the building materials were assessed by UNSCEAR method for different air exchange rates. The measurements have revealed that Korean brick exhaled the highest radon and thoron while Indonesian brick exhaled the lowest thoron. Results showed that for a typical low dense material, radon and thoron exhalation rate will increase until reached its maximum at a certain value of humidity and will remain saturated above it. Analysis on concentration and effective dose showed that radon is strongly affected by air exchange rate (ACH). This is showed by about 66 times decrease of radon dose from 0.00 h-1 to those of 0.50 h-1 ACH and decrease by a factor of 2 from 0.50 h-1 to those of 0.80 h-1. In case of thoron, the ACH doesn't have significant effects on effective dose.

Measurement of the radon and thoron exhalation rates from the water surface of Yixin lake

  • Jiulin Wu;Shuaibin Liu;Tao Hu;Fen Lin;Ruomei Xie;Shuai Yuan;Haibo Yi;Yixiang Mo;Jiale Sun;Linquan Cheng;Huiying Li;Zhipeng Liu;Zhongkai Fan;Yanliang Tan
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1538-1543
    • /
    • 2024
  • The importance of determining the radon exhalation rate from water surface is emphasized by the increased use of radon and its daughter products as tracers in large-scale circulation studies of the atmosphere. There were many methods to measure radon exhalation from water surface. With the development of radon exhalation rate measurement methods and instruments on the surface of the soil, the rock and building materials, so the radon exhalation rate from water surface can be more accurately measured by applying these improved methods and instruments. In this paper, a cuboid accumulation chamber surrounded by foam boards and a RAD7 were used to measure the radon exhalation rate on the water surface at three different positions by Yixin lake. Each measurement was performed 2 h. The radon exhalation rate from the water surface was about 6 × 10-3 Bq m-2s-1. The thoron exhalation rate from the water surface also can be estimated, it is about 0.16 Bq m-2s-1. These results hint that the radon transmission from the lake bottom soil to water and then into the atmosphere.