• Title/Summary/Keyword: Radon-222 and Radium-226

Search Result 7, Processing Time 0.027 seconds

지하수의 라듐/라돈 동시측정을 위한 백그라운드 감마선 제어

  • Lee Gil-Yong;Yun Yun-Yeol;Jo Su-Yeong;Kim Yong-Je
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.308-311
    • /
    • 2005
  • [ $^{222}Rn\;and\;^{226}Ra$ ] in groundwater were determined simultaneously using a gamma-spectroscopy. A nitrogen flushing equipment has been used for elimination and stabilization of high and unstable background activity due to the radon and its progenies in counting shield and room. The aim of present work was to control the background activity for simultaneous measurement of radium$(^{226}Ra)$ and radon$(^{222}Rn)$ in groundwater using a gamma-spectrometry. Background activity was about 1.0dps and the standard deviation was about 50%, The background activity could be minimized using nitrogen flushing equipment in the range of 0.1 to 0.5 and the RSD was about 5% at the experimental condition. The detection limit of $^{222}Rn\;and\;^{226}Ra$ in groundwater was 0.5dps/L in the background control method. In most groundwater used in the work, radon activity was more than the detection limit. However, radium activity in some groundwater was less than the detection limit. If the low level radium in groundwater must be measured, preconcentration process such as concentration should be performed before measuring the groundwater.

  • PDF

A Study of the Rn-222 and Ra-226 Analysis in Aqueous Samples with a Low-Level Liquid Scintillation Counter and Pulse-Shape Analysis (저준위 액체섬광계수기와 파형분석법을 이용한 수용액 중 라돈-222 및 라듐-226의 분석법 연구)

  • Shin, Hyun-Sang;Lee, Chang-Woo;Lee, Myung-Ho;Cho, Yung-Hyun;Hong, Kwang-Hee;Choi, Geun-Sik
    • Analytical Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.428-435
    • /
    • 1999
  • A method for measuring Rn-222 and Ra-226 in aqueous sample using liquid scintillation counting technique has been studied. The Rn-222 was extracted easily from the water sample (10 mL) by 12 mL of xylene based organic scintillant. After radioactive equilibrium between Rn-222 and its alpha emitting decay products for three hours, the alpha activity from Rn-222 and its decay products were measured in a scintillation vial using the Wallae $1220^{TM}$ Quantulus liquid scintillation counter. Ra-226 concentration in aqueous sample was determined, after isolation of Ra-226 from the sample matrix, by extraction the ingrowth of the Rn-222 and its alpha emitting decay products with xylene based organic scintillant. The optimum pulse-shape analysis (PSA) value was evaluated by the figure of merit (FM) criterion. Minimum detectable activity (MDA) is about 0.14 Bq/L (3.78 pCi) for the region of Rn-222 and its alpha emitting decay products and 0.06 Bq/L (1.63 pCi) for the region of Po-214 respectively, with 200 min, counting time at PSA level 100 in the low-diffusion polyethylene vial and xylene based cocktail solution. Experiment on the optimum sample-cocktail volume ratio, the influence of agitation and the diffusion of radon from vial were carried out.

  • PDF

Background Reduction for the ${\gamma}$-Ray Spectrometry of Environmental Radioactivity (환경방사능의 감마선 분광분석을 위한 백그라운드 소멸)

  • Seo, Bum Kyoung;Lee, Kil Yong;Yoon, Yoon Yeol;Lee, Dae Won
    • Analytical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.212-220
    • /
    • 2001
  • This study was performed to establish the analytical method of radium and radon in various environmental samples with the ${\gamma}$-ray spectrometry. The major problem in the measurements of low level ${\gamma}$-ray, such as environmental radioactivity, is the fluctuation of ${\gamma}$-ray background spectrum. To overcome this problem, a nitrogen gas was filled up in the detector chamber to reduce the background counts due to airborne radioactivities, i.e., $^{214}Pb$ and $^{214}Bi$, the daughters of $^{222}Rn$ in air. When nitrogen gas flowed around the detector, peak counts of ${\gamma}$-rays from the daughters of $^{222}Rn$ decreased about 80% below 1 MeV and about 20~50% above 1 MeV. The use of nitrogen purging results in approximately tenfold increment of sensitivity.

  • PDF

A Study on the Variation of Rn-222 Concentration in Groundwater at Busan-Geumjeong area (부산 금정구지역의 지하수에 포함된 라돈농도 변화 연구)

  • Cho, Jungg-Sook;Lee, Hyo-Min;Kim, Sun-Woong;Kim, Jin-Seop
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.3
    • /
    • pp.149-158
    • /
    • 2012
  • In this paper, we measured the variations of radon concentrations in groundwater using low-level Liquid Scintillation Counter (LSC), an instrument for analyzing the alpha and beta radionuclides at its 10 sites around the Kumjung-Gu, north-western of Busan. Optimization of Pulse Shape Analyzer (PSA) to determinate the highest value of figure of merit (FM) was decided using Quantulus 1200 LSC with radium-226 source, the optimal PSA level was shown in the range of 100 to 110. The results show that the Minimum Detectable Activity (MDA) of radon concentrations is 0.61 $Bq{\cdot}L^{-1}$ for 20 minutes in PSA level. We find that the average radon concentration in groundwater is high in granitic rock area and low in volcanic rock area. (Biotite granite : 191.39 $Bq{\cdot}L^{-1}$, Micro graphic granite : 141.88 $Bq{\cdot}L^{-1}$, Adamellite : 92.94 $Bq{\cdot}L^{-1}$, Andesite (volcanic) : 35.35 $Bq{\cdot}L^{-1}$). No significant seasonal variation pattern is observed from the long-term variation analysis from 10 selected sites. We have not seen the significant correlation of radon concentration to groundwater temperature, atmospheric temperature, atmospheric pressure and rainfall. The concentration variation is probably caused by more complex factors and processes.

Study of the determination of 226Ra in soil using liquid scintillation counter (액체섬광계수기를 이용한 토양 중 226Ra 분석 방법 연구)

  • Jung, Yoonhee;Kim, Hyuncheol;Chung, Kun Ho;Kang, Mun Ja
    • Analytical Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.65-72
    • /
    • 2016
  • This study presented an analytical method for detecting radium in soils using a liquid scintillation counter (LSC). The isotope 226Ra was extracted from soil using the fusion method and then separated from interfering radionuclides using the precipitation method. Radium was coprecipitated as sulfate salts with barium (Ba) and then converted into Ba(Ra)CO3, which is soluble in an acidic solution. The isotope 222Rn, the decay progeny of 226Ra, was trapped in a water immiscible cocktail and analyzed by LSC. The pulse shape analysis (PSA) level was estimated using 90Sr and 226Ra standard solutions. The figure of merit was the highest at PSA 80, while the alpha spillover was the lowest at PSA 80. The counting efficiency was 243 ± 2% in a glass vial. This analytical method was verified with International Atomic Energy Agency (IAEA) reference materials, including IAEA-312, IAEA-314, and IAEA-315. The recovery ranged from 60–82%, while the relative bias between the measured value and the recommended value was less than 10%. The minimum detectable activity was 2.1 Bq kg−1 with dry mass 1 g, the background count rate of 0.02 cpm, the recovery rate of 70% and counting time of 30 min.

Characteristics of Radon Variability in Soils at Busan Area (부산광역시 일대의 토양 내 라돈 농도 변화 특성)

  • Kim, Jin-Seop;Kim, Sun-Woong;Lee, Hyo-Min;Choi, Jeong-Yun;Moon, Ki-Hoon
    • Economic and Environmental Geology
    • /
    • v.45 no.3
    • /
    • pp.277-294
    • /
    • 2012
  • The characteristics of temporal spacial radon variation in soil according to parent rock type and affecting factors were studied in Busan, Korea. The concentration of $^{222}Rn$ in soils and their parent elements ($^{226}Ra$,$^{228}Ra$, U and Th) in rocks and soils were measured at 24 sites in Busan area. The distribution and transportation behavior of these parent elements were analyzed and their correlations to radon concentration in soil were determined. Topographic effects were also evaluated. Two in-situ radon measurement (soil probe and buried tube) methods were applied to measure radon concentration in soil and their accuracies were evaluated. The spatial variation of radon in soil generally reflected U concentration in the parent rock. Average radon concentrations were higher in plutonic rocks than in volcanic rocks and were decreased in the order of felsic>intermediate>mafic rock. However, the radon concentrations were significantly varied in soils developed from same parent rocks due to the disequilibrium of U and $^{226}Ra$ between rock and soil. As results, the correlation of these element concentrations between rocks and soils was very low and radon concentrations in soils had highly co-related to the concentrations of these elements in soils. Th and $^{228}Ra$ show complex enrichment characteristics, differing significantly with U, in soils developed from same parent rock because the geochemical behavior of these elements during weathering and soil developing process was different with U. The radon concentrations in the same depth of soil in slope area were also different according to positions. The radon concentrations in soils developed from same parent rocks (19 sites at Pusan National University) varied 6.8~29.8Bq/L range because of small scale topographic variation. The opposite seasonal variation pattern of radon were observed according to soil properties. It was determined that buried tube method is more accurate method than soil probe method and was very advantageous application for the analysis for the characteristics of temporal spacial radon variation in soil.

The Importance of groundwater discharge for environmental assessment of Chinhae Bay (진해만 환경평가를 위한 해저지하수의 중요성)

  • Chung Chong Soo;Hong Gi Hoon;Kim Suk Hyun;Kim Young Il;Moon Duk Soo;Park Jun Kun;Choi Jun Sun;Yang Dong Beom
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.4
    • /
    • pp.23-36
    • /
    • 2000
  • Bottom sea waters in eight stations including from inner bay to outer bay to understand the importance of the submarine groundwater discharge for the environmental assessment of Chinhae Bay was collected in August 1999 and January 2000. Generally, /sup 222/Rn is very useful tracer to assess the submarine groundwater discharge because it is 2-4 orders of magnitude more concentrated in groundwater compared to surface water. The /sup 222/Rn activities ranged between about 33 to 182 dpm/100kg within the bay. Higher activities more than 100 dpm/100kg were found at the inner bay. The /sup 226/Ra activities, its parent, however, were little different between stations. /sup 222/Rn activities at the same station varied with season. It suggests that the major source of /sup 222/Rn is not from the bottom sediment, but from the change of submarine groundwater discharge by precipitation. The contents of Cl/sup -/ and SO/sub 4//sup 2-/ in the groundwater of Wonjeon-ri were very high as 1,312 and 369 ppm, respectively, indicating that this groundwater along the Chinhae coast was affected by seawater. Therefore, the submarine groundwater in the inner Bay may discharge to the overlying water. It indicates that these submarine groundwater discharges may play an important role as another important source of nutrients in the Chinhae Bay, because groundwater around the Chinhae Bay showed high concentration of dissolved inorganic nutrients (average , nitrate>174 μM, silicate>262 μM). Therefore, further studies are required to assess the contribution by the submarine groundwater discharge in the biogeochemical processes of the Chinhae Bay.

  • PDF