• 제목/요약/키워드: Radius of Metal Part

검색결과 28건 처리시간 0.019초

굽힘공정을 갖는 불규칙형상 박판제품의 블랭킹 및 피어싱용 공정설계 시스템 (An Automated Process Planning System for Blanking or Piercing of Irregular Shaped Sheet Metal Product with Bending Processes)

  • 최재찬;김병민;김철
    • 한국정밀공학회지
    • /
    • 제15권3호
    • /
    • pp.18-23
    • /
    • 1998
  • This paper describes a research work of developing a computer-aided design of blanking and piercing for irregular-shaped sheet metal products. An approach to the CAD system is based on the knowledge-based rules. Knowledge for the CAD system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written in AutoLISP on the AutoCAD with a personal computer and is composed of four main modules, which are input and shape treatment, flat pattern layout, production feasibility check, and strip layout module. Based on knowledge-based rules, the system is designed by considering several factors, such as radius and angle of bend. material and thickness of product, complexities of blank geometry and punch profile, and availability of press. This system is capable of unfolding a formed sheet metal part to give flat pattern and automatically account for the adjustment of bend allowances to match tooling requirements by checking the dimensions and relationships of parts of the folded product. Also this system can carry out a process planning which is obtained from results of irregular shape of product that was successful in production feasibility check module according to flat pattern layout and generate strip layout drawing in graphic forms. The developed system provides its efficiency for flat pattern layout, and strip layout for the irregularly shaped sheet metal products.

  • PDF

굽힘 및 피어싱 공정을 갖는 불규칙형상 제품의 프로그레시브 가공을 위한 네스팅 및 공정설계 자동화 시스템 (An Automated Nesting and Process Planning System of Irregularly Shaped-Sheet Metal Product With Bending and Piercing Operation for Progressive Working)

  • 최재찬;김병민;김철
    • 한국정밀공학회지
    • /
    • 제15권6호
    • /
    • pp.22-32
    • /
    • 1998
  • This paper describes a research work of developing a computer-aided design of irregularly shaped-sheet metal product with bending and piercing operation for progressive working. An approach to the CAD system is based on the knowledge-based rules. Knowledge for the CAD system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. The system has been written in AutoLISP on the AutoCAD with a personal computer and is composed of five main modules, which are input and shape treatment, flat pattern-layout, production feasibility check, blank-layout, and strip-layout module. Based on knowledge-based rules, the system is designed by considering several factors, such as radius and angle of bend, material and thickness of product, complexities of blank geometry and punch profile, and availability of press. This system is capable of unfolding a formed sheet metal part to give flat pattern and automatically account for the adjustment of bend allowances to match tooling requirements by checking dimensions and the best utilization ratio of blank-layout within bending production feasibility area which is beyond ${\pm}30^{\circ}$ degrees intersecting angle between grain flow and bending edge line and which is suitable to progressive bending operation. Also the strip-layout drawing generated by a bending and a piercing operation according to punch profiles divided into automatically for external area of irregularly shaped-sheet metal product is displayed in graphic forms.

  • PDF

신形 칩折斷具에 관한 實驗的 硏究 (제1보) (An Experimental Study on New Type Chip Brakeer(Part 1))

  • 손명환;이호철
    • 대한기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.1121-1140
    • /
    • 1992
  • 본 연구에서는 부착형 칩절단구의 경사면 대신에 원고면으로 형성한 형태 칩 절단구를 고찰하고, 재래형과 비교하여 더 효과적인 칩절단구를 개발 실용화하고자 한 다. 가공법으로서는 연속칩의 처리가 가장 곤란한 선삭을, 공작물로서는 연속칩이 가장 잘 생성되는 SM 20 C의 연강을, 공구재료로서는 P계열의 초경합금을 써서 저속에 서 고속절삭속도까지 시험하였다.

B-splint법에 의한 순간 회전 중심로 결정과 하악운동에 관한 연구 (A study on the determination of the instantaneous center of rotation pathway and the movement of the mandible by using the B-spline method)

  • 강동완;계기성
    • 대한치과보철학회지
    • /
    • 제27권1호
    • /
    • pp.55-81
    • /
    • 1989
  • Recently the instantaneous center concept has been to understand the biomechanics by which a tissue derangement causes a mechanical derangement in human joint. Therefore, to understand the biomechanics of temporomandibular joint (T.M.J.) as a part of human joint, it is necessary to clarify the instantaneous center of rotation (I.C.R.) in the mandibular movement. Twenty male subjects without T.M.J. disorder and mandibular deviation during the mandibular movement were selected for this study. The habitual opening and closing paths were recorded on the paper of the sagittal metal plate by two pencil markers connected to the resin open clutch attached on the lower teeth, which was designed for this study. The coordinates of the 33-target points and the 109-anatomical landmarks were obtained using a Summagraphic digitizer connected to a 18AT computer. The original raw data of the opening and closing paths were smoothed by B-spline curve fitting technique and then the I.C.R. pathways were determined mathematically by the computer using algorithm for finding the I.C.R. of a planer rigid body model. Also the opening and closing movements of the mandible were simulated according to the determined I.C.R. The results obtained from this study were as follows. 1. At the early opening and the last closing, I.C.R's were almost distributed around the mastoid process outside the mandibular body without the presence in the region of the mandibular condyle. 2. The I.C.R. pathway showed variable patterns to each subject at the opening and closing movements. 3. The K constant with uniform pattern was obtained by the rotation angle times the radius, which was assumed to the index of the mandibular movement. 4. The opening and closing movements of the mandible were simulated by the I.C.R. pathways at the habitual opening and closing movements. 5. The mandibular condyle was rotated or translated accordng to the relative rotation angle and radius of the determinant factors of K contant.

  • PDF

파인블랭킹 공정에서의 곡률부 다이롤 감소를 위한 전단 공정 설계 (Design of shearing process to reduce die roll in the curved shape part of fine blanking process)

  • 전용준
    • Design & Manufacturing
    • /
    • 제17권3호
    • /
    • pp.15-20
    • /
    • 2023
  • In the fine blanking process, which is a press operation known for producing parts with narrow clearances and high precision through the application of high pressure, die roll often occurs during the shearing process when the punch penetrates the material. This die roll phenomenon can significantly reduce the functional surface of the parts, leading to decreased product performance, strength, and fatigue life. In this research, we conducted an in-depth analysis of the factors influencing die roll in the curvature area of the fine blanking process and identified its root causes. Subsequently, we designed and experimentally verified a die roll reduction process specifically tailored for the door latch manufacturing process. Our findings indicate that die roll tends to increase as the curvature radius decreases, primarily due to the heightened bending moment resulting from reduced shape width-length. Additionally, die roll is triggered by the absorption of initial punch energy by scrap material during the early shearing phase, resulting in lower speed compared to the product area. To mitigate the occurrence of die roll, we strategically selected the Shaving process and carefully determined the shaving direction and clearance area length. Our experiments demonstrated a promising trend of up to 75% reduction in die roll when applying the Shaving process in the opposite direction of pre-cutting, with the minimum die roll observed at a clearance area length of 0.2 mm. Furthermore, we successfully implemented this approach in the production of door latch products, confirming a significant reduction in die roll. This research contributes valuable insights and practical solutions for addressing die roll issues in fine blanking processes.

Investigation of nonlinear vibration behavior of the stepped nanobeam

  • Mustafa Oguz Nalbant;Suleyman Murat Bagdatli;Ayla Tekin
    • Advances in nano research
    • /
    • 제15권3호
    • /
    • pp.215-224
    • /
    • 2023
  • Nonlinearity plays an important role in control systems and the application of design. For this reason, in addition to linear vibrations, nonlinear vibrations of the stepped nanobeam are also discussed in this manuscript. This study investigated the vibrations of stepped nanobeams according to Eringen's nonlocal elasticity theory. Eringen's nonlocal elasticity theory was used to capture the nanoscale effect. The nanoscale stepped Euler Bernoulli beam is considered. The equations of motion representing the motion of the beam are found by Hamilton's principle. The equations were subjected to nondimensionalization to make them independent of the dimensions and physical structure of the material. The equations of motion were found using the multi-time scale method, which is one of the approximate solution methods, perturbation methods. The first section of the series obtained from the perturbation solution represents a linear problem. The linear problem's natural frequencies are found for the simple-simple boundary condition. The second-order part of the perturbation solution is the nonlinear terms and is used as corrections to the linear problem. The system's amplitude and phase modulation equations are found in the results part of the problem. Nonlinear frequency-amplitude, and external frequency-amplitude relationships are discussed. The location of the step, the radius ratios of the steps, and the changes of the small-scale parameter of the theory were investigated and their effects on nonlinear vibrations under simple-simple boundary conditions were observed by making comparisons. The results are presented via tables and graphs. The current beam model can assist in designing and fabricating integrated such as nano-sensors and nano-actuators.

다단 냉간단조품의 자동공정설계시스템 (Automated Forming Sequence Design System for Multistage Cold Forging Parts)

  • Park, J.C.;Kim, B.M.;Kim, S.W.;Kim, H.K.
    • 한국정밀공학회지
    • /
    • 제11권4호
    • /
    • pp.77-87
    • /
    • 1994
  • This paper deals with an automated forming sequence design system by which designers can determine desirable operation sequences even if they have little experience in the design of cold forging process. The forming sequence design in the cold forging is very important and requires many kinds of technical and empirical knowledge. They system isproposed, which generates forming sequence plans for the multistage cold forging of axisymmtrical solid products. Since the process of metal forming can be considered as a transformation of geometry, treatment of the geometry of the product is a key in planning process. To recognize the geometry of the product section, section entity representation and primitive geometries were used. Section entity representation can be used for the calculation of maximum diameter, maximum height, and volume. Forming sequence for the part can be determined by means of primitive geometries such as cylinder, cone, convex, and concave. By utilizing this geometrical characteristics (diameter, height, and radius), the product geometry is expressed by a list of the priitive geometries. Accordingly the forming sequence design is formulated as the search problem which starts with a billet geometry and finishes with a given product one. Using the developed system, the sequence drawing with all dimensions, which includes the proper sequence of operations for the part, is generated under the environment of AutoCAD. Based on the results of forming sequence, process variables(strain, punch pressure, die inner pressure, and forming load) are determined.

  • PDF

터보차저 노즐 슬라이드 조인트의 정형공정에 관한 연구 (Study on the shaping process of turbocharger nozzle slide joint)

  • 김봉주;이선봉
    • 한국산학기술학회논문지
    • /
    • 제18권1호
    • /
    • pp.107-114
    • /
    • 2017
  • 터보차저는 배기가스로 구동되는 엔진 과급기를 말하며, 배기에너지를 이용하여 배기통로에 연결된 터빈의 회전력을 변화시켜, 혼합 가스의 충전효율을 높여 출력과 연비를 향상 시키는 부품이다. 이러한 목적에 따라 과급을 조절해주는 것이 중요하며, 핵심 부품 중 노즐 슬라이드 조인트가 있다. 소재는 현재 오스테나이트 계 스테인리스강으로 높은 내열성과 내식성 등의 우수한 기계적 성질을 이용하고 있다. 그러나 절삭성이 나쁘기 때문에 절삭가공에 의해 복잡한 형상의 제품을 만드는데 어려운 점이 많다. 현재 노즐 슬라이드 조인트의 가공방법은 금속분말 사출성형후 치수정밀도를 위해 절삭가공을 행하고 있다. 따라서 본 연구에서는 Nitronic 60을 이용하여 터보차저 과급유량을 조절해주는 노즐 슬라이드 조인트의 제작 공정에서 절삭가공이 필요 없는 정형가공 공정을 제안하기 위하여, 기계적 특징에 영향과 연관이 있는 소결온도, 제품의 응력 및 변형률, 형상과 관련이 있는 모따기 펀치각도 및 펀치의 곡률반경을 설계변수로 선정하였다. 그에 따라 유한요소해석과 실험계획법인 다구찌법 및 SN비를 이용하여 가장 좋은 공정 조건을 제안하였다. 최종제품과 유한요소해석 결과의 상대밀도 및 정수압을 비교하여 경향이 일치함을 알 수 있었다. 따라서 다구찌법을 이용한 금속분말의 성형공정 설계에 유용하게 적용할 수 있을 것으로 판단된다.