• Title/Summary/Keyword: Radioisotope Thermo-Electric Generator

Search Result 2, Processing Time 0.015 seconds

Heat Transfer and Radiation Shielding Analysis for Optimal Design of Radioisotope Thermoelectric Generator (방사성동위원소 열전 발전기 최적설계를 위한 차폐 및 열전달 해석)

  • Son, Kwang Jae;Hong, Jintae;Yang, Young Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1567-1572
    • /
    • 2013
  • To supply electric power in certain extreme environments such as a spacecraft or in military applications, a radioisotope thermoelectric generator has been highlighted as a useful energy source owing to its high energy density, long lifetime, and high reliability. A radioisotope thermoelectric generator generates electric power by using the heat energy converted from the radioactive energy of a radioisotope. In this study, FE analyses such as radiation shield analysis, heat transfer analysis, and power recovery rate analysis have been carried out to achieve an optimal design for a radioisotope thermoelectric generator using $SrTiO_2$.

Study on the Thermal Design of Nuclear Battery for Lunar Mission (한국형 달 탐사용 원자력전지의 열제어 구조 연구)

  • Hong, Jintae;Son, Kwang-Jae;Kim, Jong-Bum;Park, Jong-Han;Ahn, Dong-Gyu;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.4
    • /
    • pp.271-277
    • /
    • 2016
  • For a stable electric power supply in the space, nuclear batteries have been used as the main power source in a spacecraft owing to their long lifetime and high reliability. In accordance with the plan for lunar mission in Korea, nuclear batteries will supply electricity to the rover that needs to be developed. According to the information about the estimated payload, Korea Atomic Energy Research Institute started with the conceptual design based on the previous studies in USA and Russia. Because a nuclear battery converts the decay heat of the radioisotope into electricity, thermal design, radiation shield, and shock protection need to be considered. In this study, two types of nuclear batteries, radial type and axial type, were designed according to the alignment of the thermoelectric module. Heat transfer analyses were performed to compare their thermoelectric efficiency, and test mockups were fabricated to evaluate their performances.