• Title/Summary/Keyword: Radiographic non-destructive testing

Search Result 12, Processing Time 0.028 seconds

Comparative Reliability of Nondestructive Testing for Weld: Water Wall Tube in Thermal Power Plant Boiler Case Study (용접부 비파괴 검사의 신뢰성 비교: 화력 발전소의 보일러 수냉벽 배관 사례연구)

  • Choi, Chang Deok;Lim, Ik Sung
    • Journal of Applied Reliability
    • /
    • v.18 no.3
    • /
    • pp.240-249
    • /
    • 2018
  • Purpose: The purpose of this research is to find which technique, between the PAUT (Phased array ultrasonic test) that has been used widely in practice and RT (Radiographic test) that was used widely in the past, has the higher reliability as a non-destructive testing of welding points in water wall tubes. Methods: To evaluated the reliability of non-destructive testing, eleven test pieces that were fabricated intentionally, which have the most frequently occurred defect types in water wall tubes and then both the PAUT and RT were performed on those eleven test pieces to compare their reliability. Results: The differences of type of defect, length are occurred due to the characteristics of nondestructive testing. The RT could not detect the lack of fusion defect type in specimen #4 and #8 while PAUT could not detect the lateral crack and 1 mm size small porosity in specimen #11. Conclusion: It is concluded that applying both the RT and PAUT result the best reliability rather than applying only one test method, if it is possible, in nondestructive testing of weld water wall tube in thermal power plant boiler case.

Image Processing Algorithms for Non-destructive Testing

  • Lee, SangBock
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.9
    • /
    • pp.45-49
    • /
    • 2016
  • In this study, an image processing algorithm was developed to increase readability of the images of specific parts of a KTX train acquired by using a mobile digital radiographic testing device in a situation where a running train is stopped. The image processing algorithm was realized by using a Visual C++ development tool. The algorithm developed in this study allows to select an interested region in the acquired images when the interested region is suspected to cause a problem, and applies a thinning process based Sobel operators to the selected region. The experimental results show that the readability of defect parts that are not visible to naked eyes was increased through edge detector. Application of the algorithm developed in this study may help to accurately read non-destructive inspection images.

Comparative Study of Deep Learning Algorithm for Detection of Welding Defects in Radiographic Images (방사선 투과 이미지에서의 용접 결함 검출을 위한 딥러닝 알고리즘 비교 연구)

  • Oh, Sang-jin;Yun, Gwang-ho;Lim, Chaeog;Shin, Sung-chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.687-697
    • /
    • 2022
  • An automated system is needed for the effectiveness of non-destructive testing. In order to utilize the radiographic testing data accumulated in the film, the types of welding defects were classified into 9 and the shape of defects were analyzed. Data was preprocessed to use deep learning with high performance in image classification, and a combination of one-stage/two-stage method and convolutional neural networks/Transformer backbone was compared to confirm a model suitable for welding defect detection. The combination of two-stage, which can learn step-by-step, and deep-layered CNN backbone, showed the best performance with mean average precision 0.868.

Segmentation of Welding Defects using Level Set Methods

  • Mohammed, Halimi;Naim, Ramou
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.1001-1008
    • /
    • 2012
  • Non-destructive testing (NDT) is a technique used in science and industry to evaluate the properties of a material without causing damage. In this paper we propose a method for segmenting radiographic images of welding in order to extract the welding defects which may occur during the welding process. We study different methods of level set and choose the model adapted to our application. The methods presented here take the property of local segmentation geodesic active contours and have the ability to change the topology automatically. The computation time is considerably reduced after taking into account a new level set function which eliminates the re-initialization procedure. Satisfactory results are obtained after applying this algorithm both on synthetic and real images.

Metallurgical Characteristics and Manufacturing Techniques of Ring-Pommel Swords Excavated from Ancient Tombs in Hadae, Ulsan (울산 하대고분 출토 민고리자루칼의 재질 특성과 환두부 제작 방법)

  • Jo, Ha Nui;Kim, Han Seul;You, Ha Rim;Lee, Jae Sung
    • Journal of Conservation Science
    • /
    • v.36 no.3
    • /
    • pp.197-212
    • /
    • 2020
  • This study analyzed the microstructure of ring-pommel swords, excavated from Ancient Tombs, Hadae, Ulsan and examined their production technique, using non-destructive testing and a metallurgical method. The results confirmed that the five ring-pommel swords, unearthed in Ancient Tombs, Hadae, Ulsan, as identified by radiographic non-destructive testing, had been solely manufactured using iron, through forging based on the single-piece technique. Furthermore, these results were compared with previous studies, and the manufacturing techniques of single-piece ring-pommel swords were categorized into three types: pure iron - changing the shape, pure iron - changing the shape - carburization, and steel - changing the shape - quenching. The ring-pommels of four swords had around 0.7% of carbon content, which is as much as for eutectoid steel and higher than for other parts of these swords, such as the backs of their blades and handles. The weapon function of a small ring-pommel sword, under 60cm in length, was maximized by quenching focusing on its blade. Conversely, the martensite quenching structure was not observed in four ring-pommel swords shorter than 75cm. In other words, the same types of single-piece ring-pommel swords(late in 2C~early in 4C) were unearthed from Ancient Tombs, Hadae, and the group who has manufactured these swords is presumed to have limited their effectiveness, functionally depending on purposes, through an iron-making process and heat-treatment techniques.

Preliminary Study (1) for Development of Computed Radiography (CR) Image Analysis according to X-ray Non-destructive Test by Wood Species (Computed Radiograhpy (CR)를 통한 목재 수종별 X선 투과 이미지 해석을 위한 기초연구 (1))

  • Song, Jung Il;Kim, Han Seul
    • Journal of Conservation Science
    • /
    • v.37 no.3
    • /
    • pp.220-231
    • /
    • 2021
  • The use of digital copies of film-based analog images and the introduction of digital radiographic imaging systems using image plates gradually replace the non-destructive radiationirradiation method of Cultural Heritage. The quality of images obtained from this technique is affected by conditions such as tube voltage, tube current, and exposure time, type of image acquisition medium, distance of the artifacts from the image acquisition medium, and thickness of artifacts. In this study, we evaluated the grayscale image obtained using GE's Computed Radiograhpy (CR) imaging system, the transmission characteristics of the X-ray source for each tree type (pine, chestnut, sawtooth oak, ginkgo) used in wooden Cultural Heritage, and the signal-to-noise ratio (SNR) and contrast. The GE's CR imaging were analyzed using the Duplex wire image quality indicator, line-pair gauges.

Implementation Status of Performance Demonstration Program for Steam Generator Tubing Analysts in Korea

  • Cho, Chan-Hee;Lee, Hee-Jong;Yoo, Hyun-Ju;Nam, Min-Woo;Hong, Sung-Yull
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.1
    • /
    • pp.63-68
    • /
    • 2013
  • Some essential components in nuclear power plants are periodically inspected using non-destructive examinations, for example ultrasonic, eddy current and radiographic examinations, in order to determine their integrity. These components include nuclear power plant items such as vessels, containments, piping systems, pumps, valves, tubes and core support structure. Steam generator tubes have an important safety role because they constitute one of the primary barriers between the radioactive and non-radioactive sides of the nuclear power plant. There is potential that if a tube bursts while a plant is operating, radioactivity from the primary coolant system could escape directly to the atmosphere. Therefore, in-service inspections are critical in maintaining steam generator tube integrity. In general, the eddy current testing is widely used for the inspection of steam generator tubes due to its high inspection speed and flaw detectability on non-magnetic tubes. However, it is not easy to analyze correctly eddy current signals because they are influenced by many factors. Therefore, the performance of eddy current data analysts for steam generator tubing should be demonstrated comprehensively. In Korea, the performance of steam generator tubing analysts has been demonstrated using the Qualified Data Analyst program. This paper describes the performance demonstration program for steam generator tubing analysts and its implementation results in Korea. The pass rate of domestic analysts for this program was 71.4%.

The Evaluation of Joints Characteristics of Friction Stir Welded Al Alloys for Automobiles (마찰교반접합(FSW)에 의한 자동차용 Al합금의 접합부 특성 평가)

  • Kim, Heung-Ju;Jo, Hyeon-Jin;Jang, Ung-Seong;Bang, Han-Seo
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.171-173
    • /
    • 2005
  • To evaluate the applicability of dissimilar metal friction stir welding in automobile manufacturing process, friction stir welding trials were carried out for typical 5000 and 6000 series aluminum alloy sheets with 2mm thickness. The sound joints of A15052 and A16061-T6 alloys were successfully formed under a wide range of welding condition. Excellent weld ability has been obtained at a condition of rotating speed 2000rpm and travel speed 100mm/min, while a radiographic test also confirmed defect free joint for this condition. Through the Erichsen cup test, the plastic formability of the FSWelded joints was found to be about 83% of base metal.

  • PDF

Detection and Comparison of Surface Defects in Pipe Welds (배관 용접부 표면결함 검출 및 비교)

  • Jung, Yoon-Soo;Gao, Jia-Chen;Ahn, Tae-Hyoung;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.43-48
    • /
    • 2020
  • At present, 24 nuclear power plants are in operation nationwide as the main power source responsible for about 27% of Korea's electricity, and five nuclear power plants are currently under construction. Issues of nuclear safety and reliability have always existed, but after the Fukushima accident, ensuring reliability has become an even more important issue for safety. Compared to other kinds of accidents, the initial response after a nuclear accident is more important than any other accident. Prior to accidents, it is important to be able to predict and judge the accident in advance for the sake of prevention. In this research, non-destructive inspection methods for existing pipe welds include radiographic, ultrasonic, magnetic particle practice, and liquid penetration testing. For this experiment, carbon steel pipes like that of the material used in nuclear pipes were adopted, and specimen welded to the flange (Flange) were manufactured. After testing, the weld specimen were not damaged through the infrared thermography (IRT) experiment. This study attempted to improve the safety of carbon steel pipes through a comparative analysis of finite element analysis.

The Basic Study on the Method of Acoustic Emission Signal Processing for the Failure Detection in the NPP Structures (원전 구조물 결함 탐지를 위한 음향방출 신호 처리 방안에 대한 기초 연구)

  • Kim, Jong-Hyun;Korea Aerospace University, Jae-Seong;Lee, Jung;Kwag, No-Gwon;Lee, Bo-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.485-492
    • /
    • 2009
  • The thermal fatigue crack(TFC) is one of the life-limiting mechanisms at the nuclear power plant operating conditions. In order to evaluate the structural integrity, various non-destructive test methods such as radiographic test, ultrasonic test and eddy current are used in the industrial field. However, these methods have restrictions that defect detection is possible after the crack growth. For this reason, acoustic emission testing(AET) is becoming one of powerful inspection methods, because AET has an advantage that possible to monitor the structure continuously. Generally, every mechanism that affects the integrity of the structure or equipment is a source of acoustic emission signal. Therefore the noise filtering is one of the major works to the almost AET researchers. In this study, acoustic emission signal was collected from the pipes which were in the successive thermal fatigue cycles. The data were filtered based on the results from previous experiments. Through the data analysis, the signal characteristics to distinguish the effective signal from the noises for the TFC were proven as the waveform difference. The experiment results provide preliminary information for the acoustic emission technique to the continuous monitoring of the structure failure detection.