• Title/Summary/Keyword: Radiofrequency (RF) ablation

Search Result 14, Processing Time 0.017 seconds

Effect of Perfluorobutane Microbubbles on Radiofrequency Ablation for Hepatocellular Carcinoma: Suppression of Steam Popping and Its Clinical Implication

  • Dong Young Jeong;Tae Wook Kang;Ji Hye Min;Kyoung Doo Song;Min Woo Lee;Hyunchul Rhim;Hyo Keun Lim;Dong Hyun Sinn;Heewon Han
    • Korean Journal of Radiology
    • /
    • v.21 no.9
    • /
    • pp.1077-1086
    • /
    • 2020
  • Objective: To evaluate the effect of perfluorobutane microbubbles (Sonazoid®, GE Healthcare) on steam popping during radiofrequency (RF) ablation for treating hepatocellular carcinoma (HCC), and to assess whether popping affects treatment outcomes. Materials and Methods: The institutional review board approved this retrospective study, which included 90 consecutive patients with single HCC, who received percutaneous RF ablation as the first-line treatment. The patients were divided into two groups, based on the presence or absence of the popping phenomenon, which was defined as an audible sound with a simultaneous sudden explosion within the ablation zone as detected via ultrasonography during the procedure. The factors contributing to the popping phenomenon were identified using multivariable logistic regression analysis. Local tumor progression (LTP) and disease-free survival (DFS) were assessed using the Kaplan-Meier method with the log-rank test for performing comparisons between the two groups. Results: The overall incidence of the popping phenomenon was 25.8% (24/93). Sonazoid® was used in 1 patient (4.2%) in the popping group (n = 24), while it was used in 15 patients (21.7%) in the non-popping group (n = 69). Multivariable analysis revealed that the use of Sonazoid® was the only significant factor for absence of the popping phenomenon (odds ratio = 0.10, p = 0.048). There were no significant differences in cumulative LTP and DFS between the two groups (p = 0.479 and p = 0.424, respectively). Conclusion: The use of Sonazoid® has a suppressive effect on the popping phenomenon during RF ablation in patients with HCC. However, the presence of the popping phenomenon may not affect clinical outcomes.

Thermal Property Measurement of Swine Atrium

  • Oh, Jung-Hwan;Kim, Jee-Hyun
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.5
    • /
    • pp.343-347
    • /
    • 2008
  • Thermal conductivity, thermal diffusivity were measured in the atrium of a swine heart. Radiofrequency (RF) catheter ablation in an atrium has rapidly emerged at the treatment of symptomatic reentrant arrhythmia associated with accessory pathway or Atrioventricular (AV) node conduction. The thermal properties of an atrium are definitely necessary for these treatments because, in thermal treatments, conductivity and diffusivity are significant factors in the relationship between the applied RF power and the resulting atrium temperature rise. Thermal properties were measured using a self-heated thermistor probe. Thermistor probes were inserted into the tissue of interest and were used to supply heat within the tissue as well as to monitor the temperature rise in the tissue. The measurements were performed at temperatures of 25, 37, $50^{\circ}C$. Atrium thermal conductivity ranged from 5.17$\pm$0.12 mW/cm$^{\circ}C$ at $25^{\circ}C$ to 5.33$\pm$0.08 mW/cm$^{\circ}C$ at $37^{\circ}C$. Atrium thermal diffusivity ranged from 0.00132$\pm$0.00007$cm^2$/sec at $25^{\circ}C$ to 0.00138$\pm$0.00003 $cm^2$/sec at $50^{\circ}C$. This paper also present the thermal property comparison of both chambers of a heart (ventricle and atria).

Relationship between paravertebral muscle twitching and long-term effects of radiofrequency medial branch neurotomy

  • Koh, Jae Chul;Kim, Do Hyeong;Lee, Youn Woo;Choi, Jong Bum;Ha, Dong Hun;An, Ji Won
    • The Korean Journal of Pain
    • /
    • v.30 no.4
    • /
    • pp.296-303
    • /
    • 2017
  • Background: To achieve a prolonged therapeutic effect in patients with lumbar facet joint syndrome, radiofrequency medial branch neurotomy (RF-MB) is commonly performed. The purpose of this study was to evaluate the prognostic value of paravertebral muscle twitching when performing RF-MB in patients with lumbar facet joint syndrome. Methods: We collected and analyzed data from 68 patients with confirmed facet joint syndrome. Sensory stimulation was performed at 50 Hz with a 0.5 V cut-off value. Patients were divided into 3 groups according to the twitching of the paravertebral muscle during 2 Hz motor stimulation: 'Complete', when twitching was observed at all needles; 'Partial', when twitching was present at 1 or 2 needles; and 'None', when no twitching was observed. The relationship between the long-term effects of RF-MB and paravertebral muscle twitching was analyzed. Results: The mean effect duration of RF-MB was 4.6, 5.8, and 7.0 months in the None, Partial, and Complete groups, respectively (P = 0.47). Although the mean effect duration of RF-MB did not increase significantly in proportion to the paravertebral muscle twitching, the Complete group had prolonged effect duration (> 6 months) than the None group in subgroup analysis. (P = 0.03). Conclusions: Paravertebral muscle twitching while performing lumbar RF-MB may be a reliable predictor of long-term efficacy when sensory provocation under 0.5 V is achieved. However, further investigation may be necessary for clarifying its clinical significance.

Synthesis of Gold Nanoparticles by Electro-reduction Method and Their Application as an Electro-hyperthermia System

  • Yoon, Young Il;Kim, Kwang-Soo;Kwon, Yong-Soo;Cho, Hee-Sang;Lee, Hak Jong;Yoon, Chang-Jin;Yoon, Tae-Jong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1806-1808
    • /
    • 2014
  • We report the successful preparation of gold nanoparticles (Au NPs) using a novel electroreduction process, which is simple, fast, and environmentally friendly (toxic chemicals such as strong reducing agents are not required). Our process allows for the mass production of Au NPs and adequate particle size control. The Au NPs prepared show high biocompatibility and are non-toxic to healthy human cells. By applying radio-frequency (RF) ablation, we monitored the electro-hyperthermia effect of the Au NPs at different RFs. The Au NPs exhibit a fast increase in temperature to $55^{\circ}C$ within 5 min during the application of an RF of 13 MHz. This temperature rise is sufficient to promote apoptosis through thermal stress. Our work suggests that the selective Au NP-mediated electro-hyperthermia therapy for tumor cells under an RF of 13 MHz has great potential as a clinical treatment for specific tumor ablation.