• Title/Summary/Keyword: Radioactive waste repository

Search Result 322, Processing Time 0.026 seconds

Waste Management and Treatment of Decommissioned Radioactive Combustible Waste

  • Min, B.Y.;Lee, Y.J.;Yun, G.S.;Lee, K.W.;Moon, J.K.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • v.1 no.1
    • /
    • pp.75-82
    • /
    • 2013
  • A large quantity of radioactive waste was generated during the decommissioning of the KRR and UCF. The radioactive waste was packed into 200 liter drums and 4m3 containers and these were temporarily stored onsite until their final disposal in the national repository facility. Some of the releasable waste was freely released and utilized for non-nuclear industries. The combustible wastes were treated by the utilization of an incinerator with a capacity of on average 20 kg/hr.

Optimization of the Layout of a Radioactive Waste Repository Based on Thermal Analysis (열해석에 기초한 방사성폐기물 처분장 배치 최적화)

  • Kwon Sangki;Choi Jong-Won;Cho Won-Jin
    • Tunnel and Underground Space
    • /
    • v.14 no.6 s.53
    • /
    • pp.429-439
    • /
    • 2004
  • The deep underground High Level Waste (HLW) repository to dispose of 36,000tons of spent fuel from the reactors in Korea needs about $4km^2$ repository area. In this study, the deep undergrond repository layout was optimized to minimize the excavation rock volume as well as underground repository area. In the optimization, the results from thermal analysis were used to define the influence of tunnel and deposition hole spacings on repository layout. The repository area and excavation rock volume could be reduced with longer disposal tunnel length. When it is necessary to reduce the repository area with satisfying thermal criteria, it is better to reduce tunnel spacing and increase deposition hole spacing. In contrast, the excavation rock volume can be reduced by increasing the tunnel spacing and decreasing the hole spacing.

Chinese buffer material for high-level radiawaste disposal --Basic features of GMZ-l

  • WEN Zhijian
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.236-244
    • /
    • 2005
  • Radioactive wastes arising from a wide range of human activities are in many different physical and chemical forms, contaminated with varying radioactivity. Their common feature is the potential hazard associated with their radioactivity and the need to manage them in such a way as to protect the human environment. The geological disposal is regarded as the most reasonable and effective way to safely disposal high-level radioactive wastes in the world. The conceptual model of geological disposal in China is based on a multi-barrier system that combines an isolating geological environment with an engineered barrier system. The buffer is one of the main engineered barriers for HLW repository. The buffer material is expected to maintain its low water permeability, self-sealing property, radio nuclides adsorption and retardation property, thermal conductivity, chemical buffering property, overpack supporting property, stress buffering property over a long period of time. Benotite is selected as the main content of buffer material that can satisfy above. GMZ deposit is selected as the candidate supplier for Chinese buffer material of High Level Radioactive waste repository. This paper presents geological features of GMZ deposit and basic property of GMZ Na bentonite. GMZ bentonite deposit is a super large scale deposits with high content of Montmorillonite (about $75\%$) and GMZ-l, which is Na-bentonite produced from GMZ deposit is selected as reference material for Chinese buffer material study.

  • PDF

A Prediction of Thermal Conductivity for Compacted Bentonite Buffer in the High-level Radioactive Waste Repository (고준위폐기물 처분시설의 압축 벤토나이트 완충재의 열전도도 추정)

  • Yoon, Seok;Lee, Min-Soo;Kim, Geon-Young;Lee, Seung-Rae;Kim, Min-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.7
    • /
    • pp.55-64
    • /
    • 2017
  • A geological repository has been considered one of the most adequate options for the disposal of high-level radioactive waste. A geological repository will be constructed in a host rock at a depth of 500~1,000 meters below the ground surface. The geological repository system consists of a disposal canister with packed spent fuel, buffer material, backfill material, and intact rock. The buffer is very important to assure the disposal safety of high-level radioactive waste. It can restrain the release of radionuclide and protect the canister from the inflow of groundwater. High temperature in a disposal canister is released into the surrounding buffer material, and thus the thermal transfer behavior of the buffer material is very important to analyze the entire disposal safety. Therefore, this paper presents a thermal conductivity prediction model for the Kyungju compacted bentonite buffer material which is the only bentonite produced in Korea. Thermal conductivity of Kyungju bentonite was measured using a hot wire method according to various water contents and dry densities. With 39 data obtained by the hot wire method, a regression model to predict the thermal conductivity of Kyungju bentonite was suggested.

Analysis of Functional Criteria for Buffer Material in a High-level Radioactive Waste Repository

  • W. J. Cho;Lee, J. O.;K. S. Chun;Park, Hyun-Soo
    • Nuclear Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.116-132
    • /
    • 1999
  • This study is intended to analyze the requirements of a buffer material that is one of the major components of the engineered barriers in a high-level radioactive waste repository. The characteristics of potential materials for the buffer in the repository were analyzed and a candidate material was selected. And, based on the current knowledge and the information from various sources, the requirements of a buffer material were evaluated. Finally its quantitative functional criteria on the generic viewpoint has been recommended to be supplied as a guideline for the development of the reference disposal concept and the related buffer material in Korea. The criteria are composed of seven major items, such as hydraulic conductivity, retardation capacity, swelling potential and swelling pressure, thermal conductivity, longevity, organic matter content, and mechanical properties.

  • PDF

Status of Czech Low and Intermediate Radioactive Waste Management in the Context of European Development

  • Trtilek, Radek;Havlova, Vaclava;Podlaha, Josef;Svoboda, Karel;Otcovsky, Tomas
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.29-38
    • /
    • 2021
  • The article summarises the status and competence of UJV Rez, a. s. (up to 2012, the Nuclear Research Institute Rez, Czech Republic) in the field of radioactive waste (RAW) management as a company managing of 95% of institutional radioactive wastes in Czech Republic. UJV Rez a. s. has been one of the Czech Republic's key research and engineering institutions in the field of nuclear energy production since 1955. The company processes and conditions prior to storage 95% of so-called institutional RAW and is the principal partner of the state with respect to the research support of the Czech deep geological repository development project. UJV Rez a. s. boasts its own accredited radiochemical analytical test laboratory, unique of its kind in the Czech Republic. Of equal importance is UJV Rez's active participation in a range of international organisations and associations and its involvement in wide range of international projects, and so as European projects. One of them is EU funded project PREDIS: Pre-disposal management of radioactive wastes, that has started at September 2020, focused on the field of low level radioactive waste (LLW) and intermediate level radioactive waste (ILW) pre-disposal.

Conceptual Modeling Coupled Thermal-Hydrological-Chemical Processes in Bentonite Buffer for High-Level Nuclear Waste Repository (고준위 방사성폐기물 처분장에서 벤토나이트 완충제에 대한 열-수리-화학 작용 개념 모델링)

  • Choi, Byoung-Young;Ryu, Ji-Hun;Park, Jinyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • In this study, thermal-hydrological-chemical modeling for the alteration of a bentonite buffer is carried out using a simulation code TOUGHREACT. The modeling results show that the water saturation of bentonite steadily increases and finally the bentonite is fully saturated after 10 years. In addition, the temperature rapidly increases and stabilizes after 0.5 year, exhibiting a constant thermal gradient as a function of distance from the copper tube. The change of thermal-hydrological conditions mainly results in the alteration of anhydrite and calcite. Anhydrite and calcite are dissolved along with the inflow of groundwater. They then tend to precipitate in the vicinity of the copper tube due to its high temperature. This behavior induces a slight decrease in porosity and permeability of bentonite near the copper tube. Furthermore, this study finds that the diffusion coefficient can significantly affect the alteration of anhydrite and calcite, which causes changes in the hydrological properties of bentonite such as porosity and permeability. This study may facilitate the safety assessment of high-level radioactive waste repositories.

WASTE MANAGEMENT IN DECOMMISSIONING PROJECTS AT KAERI

  • Hong Sang-Bum;Park Jin-Ho
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.290-299
    • /
    • 2005
  • Two decommissioning projects are carried out at the KAERI (Korean Atomic Energy Research Institute), one for the Korea research reactors, KRR-1 and KRR-2, and another for the uranium conversion plant (UCP). The concept of the management of the wastes from the decommissioning sites was reviewed with a relation of the decommissioning strategies, technologies for the treatment and the decontamination, and the characteristics of waste. All the liquid waste generated from KRR-1 and KRR-2 decommissioning site is evaporated by a solar evaporation facility and all the liquid waste from the UCP is treated together with lagoon sludge waste. The solid wastes from the decommissioning sites are categorized into three groups; not contaminated, restricted releasable and radioactive waste. The not-contaminated waste will be reused and/or disposed at an industrial disposal site, and the releasable waste is stored for the future disposal at the KAERI. The radioactive waste is packed in containers, and will be stored at the decommissioning sites till they are sent to a national repository site. The reduction of the radioactive solid waste is one of the strategies for the decommissioning projects and could be achieved by the repeated decontamination. By the achievement of the minimization strategy, the amount of radioactive waste was reduced and the disposal cost will be reduced, but the cost for manpower, for direct materials and for administration was increased.

  • PDF

Heat Transfer Modeling by the Contact Condition and the Hole Distance for A-KRS Vertical Disposal (A-KRS 수직 처분공 접촉 조건 및 처분공 간의 거리에 따른 열전달 해석)

  • Kim, Dae-Young;Kim, Seung-Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.313-319
    • /
    • 2019
  • The A-KRS (Advanced Korean Reference Disposal System) is the disposal concept for pyroprocessed waste, which has been developed by the Korea Atomic Energy Research Institute. In this disposal concept, the amount of high-level radioactive waste is minimized using pyrochemical process, called pyroprocessing. The produced pyroprocessed waste is then solidified in the form of monazite ceramic. The final product of ceramic wastes will be disposed of in a deep geological repository. By the way, the decay heat is generated due to the radioactive decay of fission products and raises the temperature of buffer materials in the near field of radioactive waste repository. However, the buffer temperature must be kept below $100^{\circ}C$ according to the safety regulation. Usually, the temperature can be controlled by variation of the canister interdistance. However, KAERI has modelled thermal analysis under the boundary condition, where the waste canisters are in direct contact with each other. Therefore, a reliable temperature analysis in the disposal system may fail because of unknown thermal resistence values caused by the spatial gap between waste canisters. In the present work, we have performed thermal analyses considering the gap between heating elements and canisters at the beginning of canister loading into the radioactive waste repository. All thermal analyses were performed using the COMSOL software package.

Proposal of Application Method for Concentration Averaging of Radioactive Waste in Korea by Using CA BTP of US NRC

  • Jiyoung Yi;Chang-Lak Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.3
    • /
    • pp.347-357
    • /
    • 2023
  • United States Nuclear Regulatory Commission (U.S. NRC) specifies regulations on obtaining licenses and describes the technical position on the average waste concentration, also known as Concentration Averaging and Encapsulation Branch Technical Position (CA BTP); CA BTP helps classify blendable waste and discrete items and address concentration averaging. The technical position details are reviewed and compared in a real environment in Korea. A few cases of concentration averaging based on the application of CA BTP to domestic radioactive waste are presented, and the feasibility of the application is assessed. The radioactive waste considered herein does not satisfy the Disposal Concentration Limit (DCL) of the second-phase disposal facility while applying the preliminary classification. However, if CA BTP is applied when the radioactive waste is mixed with other radioactive waste items in a large and heavy container, it can be disposed of at the second-phase disposal facility in Gyeongju Repository. To apply the CA BTP of the U.S. NRC, it is necessary to investigate the safety assessment conditions of the US and Korea.