• Title/Summary/Keyword: Radioactive waste repository

Search Result 322, Processing Time 0.019 seconds

A-KRS GoldSim Model Verification: A Comparison Study of Performance Assessment Model (KAERI A-KRS 골드심 성능평가 모델 비교 검증 연구)

  • Lee, Youn-Myoung;Jeong, Jongtae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.2
    • /
    • pp.103-114
    • /
    • 2013
  • The Korea Atomic Energy Research Institute has developed a performance assessment model implementing the A-KRS concept, which was constructed with the GoldSim. In the A-KRS concept, spent nuclear fuel produced from pressurized-water-reactor operations would be pyroprocessed to reduce waste volume and radioactivity. The wastes to be disposed of in a geologic repository are comprised of metal and ceramic waste forms. In this study, results of simulations conducted to establish credibility and build confidence for the A-KRS model are presented. Specifically, release rates and breakthrough times simulated using the A-KRS model were compared to corresponding results from the U.S. NRC SOAR model. In addition, the A-KRS model results were compared to published release rates from the SKB repository performance assessment. This comparison of the A-KRS model results to other independent performance assessments is expected to form part of a suite of model verification and validation activities to provide confidence that the A-KRS model has been implemented appropriately.

Basic Design of the Underground Research Tunnel for HLW disposal Research (고준위폐기물 처분연구를 위한 지하연구시설에 대한 기본설계)

  • 권상기;박정화;조원진;한필수
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.199-207
    • /
    • 2004
  • In order to develop a safe geological disposal concept for the HLW from the nuclear power plants in Korea, it is necessary to evaluate the safety of the disposal concept in an underground research tunnel in the same geological formation as the host rock mass. The design concept of a research tunnel depends on the actual disposal concept, repository geometry, experiments to be carried at the tunnel, and geological conditions. In this study, geological investigation had been carried out to develop the basic design of the small scale underground disposal research tunnel in KAERI.

  • PDF

Long-term Dissolution Behavior of Cesium from Spent PWR Fuel in Contact with Compacted Bentonite under Synthetic Granitic Groundwater

  • Chun, Kwan-Sik;Kim, Seung-Soo;Bak, Seong-Jea;Park, Jongwon
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.167-173
    • /
    • 2004
  • The amount of cesium released from the leaching of spent fuels in contact with and without the compacted bentonite bloc]t which was compacted as the density of $1.4g/\textrm{cm}^3$, up to 5.7 years were measured and the empirical formula of the fractional release rate of cesium were derived from these measured values. The empirical formulas show that the long-term release rate of cesium under a repository would become a constant, as about $3{\times}10_{-6}$ fraction/day, after a certain period. The cumulative fractions of cesium released from the spent fuel with bentonite and with copper and stainless steel sheets were steadily increased, but the fraction from bare fuel was rapidly increased and then sluggishly increased. However, the remained value except its gap inventory from the cumulative fraction of cesium released from bare fuel was almost very close to the others. This suggests that the initial release of cesium from bare fuel might be dependant on its gap inventory.

  • PDF

KEY R&D ACTIVITIES SUPPORTING DISPOSAL OF RADIOACTIVE WASTE: RESPONDING TO THE CHALLENGES OF THE 21ST CENTURY

  • Miyamoto, Yoichi;Umeki, Hiroyuki;Ohsawa, Hideaki;Naito, Morimasa;Nakano, Katsushi;Makino, Hitoshi;Shimizu, Kazuhiko;Seo, Toshihiro
    • Nuclear Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.505-534
    • /
    • 2006
  • Ensuring sufficient supplies of clean, economic and acceptable energy is a critical global challenge for the 21st century. There seems little alternative to a greatly expanded role for nuclear power, but implementation of this option will depend on ensuring that all resulting wastes can be disposed of safely. Although there is a consensus on the fundamental feasibility of such disposal by experts in the field, concepts have to be developed to make them more practical to implement and, in particular, more acceptable to key stakeholders. By considering global trends and using illustrative examples from Japan, key areas for future R&D are identified and potential areas where the synergies of international collaboration would be beneficial are highlighted.

Some notes on the Timing of Geological Disposal of CANDU Spent Fuels (CANDU 사용후핵연료 처분 착수 시점에 관한 소고)

  • Choi, Heui-Joo;Kook, Dong-Hak;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.2
    • /
    • pp.167-172
    • /
    • 2010
  • CANDU spent fuel is to be disposed of at repository finally rather than recycled because of its low fissile nuclide concentration. But the difficult situation of finding a repository site can not help introducing a interim storage in the short term. It is required to find an optimum timing of geological disposal of CANDU spent fuels related to the interim storage operation period. The major factors for determining the disposal starting time are considered as safety, economics, and public acceptance. Safety factor is compared in terms of the decay heat and non-proliferation. Economics factor is compared from the point of the operation cost, and public acceptance factor is reviewed from the point of retrievability and inter-generation ethics. This paper recommended the best solution for the disposal starting time by analyzing the above factors. It is concluded that the optimum timing for the CANDU spent fuel disposal is around 2041 and that the sooner disposal time, the better from the point of technical and safety aspects.

Biosphere Modeling for Dose Assessment of HLW Repository: Development of ACBIO (고준위 방사성패기물 처분장 생태계 모델링을 위한 ACBIO개발)

  • Lee, Youn-Myoung;Hwang, Yong-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.2
    • /
    • pp.73-100
    • /
    • 2008
  • For the purpose of evaluating dose rate to individual due to long-term release of nuclides from the HLW repository, a biosphere assessment model and the implemented code, ACBIO, based on BIOMASS methodology have been developed by utilizing AMBER, a general compartment modeling tool. To show its practicability and usability as well as to see the sensitivity of compartment scheme or parametric variation to concentration and activity in compartments as well as annual flux between compartments at their peak values, some calculations are made and investigated: For each case when changing the structure of compartments and GBIs as well as varying selected input Kd values, all of which seem very important among others, dose rate per nuclide release rate is separately calculated and analyzed. From the maximum dose rates (Bq/y), flux-to-dose conversion factors (Sv/Bq) for each nuclide were derived, which are to be used for converting the nuclide release rate appearing from the geosphere through various GBIs to dose rate (Sv/y) for individual in critical group. It has been also observed that compartment scheme, identification of possible exposure group and GBIs could be all highly sensitive to the final consequences in biosphere modeling.

  • PDF

Case Studies on the Experiments for Long-Term Shear Behavior of Rock Discontinuities (암반 내 불연속면의 장기 전단 거동 평가를 위한 고찰)

  • Juhyi Yim;Saeha Kwon;Seungbeom Choi;Taehyun Kim;Ki-Bok Min
    • Tunnel and Underground Space
    • /
    • v.33 no.1
    • /
    • pp.10-28
    • /
    • 2023
  • Long-term shear behavior of the rock discontinuities should be analyzed and its stability should be evaluated to ensure the long-term stability of a high-level radioactive waste disposal repository. The long-term shear behavior of the discontinuities can be modeled with creep and RSF models. The shear creep test, velocity step test, and slide-hold-slide test can be performed to determine their model parameters or analyze the shear behavior by experiments under various conditions. Testing apparatuses for direct shear, triaxial compression, and biaxial shear were mainly used and improved to reproduce the thermo-hydro-mechanical conditions of local bedrock, and it was confirmed that the shear behavior could vary. In order to design a high-level radioactive waste disposal site in Korea, the long-term behavior of rock discontinuities should be investigated in consideration of rock types, thermo-hydro-mechanical conditions, metamorphism, and restoration of shear resistance.

Deep Borehole Disposal Concept of Spent Fuel for Implementation in Korea (사용후핵연료의 심부시추공 처분 개념의 국내 적용성 분석)

  • Yun, SooHyun;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.4
    • /
    • pp.303-309
    • /
    • 2013
  • As an alternative of the spent fuel disposal in a geologic repository, a deep borehole disposal concept for disposal at the section of 3 - 5km deep in a borehole has been proposed in several countries. In this paper, the latest reports of Sandia National Laboratories on the borehole disposal researches are analyzed. For implementation of this disposal concept in Korea, a conceptual design of spent fuel disposal canister and a modified deep borehole concept are suggested along with a required disposal area.

Current Status of the Radioactive Waste Management Program in Korea

  • Park, H-S;Hwang, Y-S;Kang, C-H
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.140-142
    • /
    • 2004
  • Since the April of 1978, Korea has strongly relied on the nuclear energy for electricity generation. As of today, eighteen nuclear power plants are in operation and ten are to be inaugurated by 2015. The installed nuclear capacity is 15, 716 MW as of the end of 2002, representing 29.3% of the nation's total installed capacity. The nuclear share in electricity remains around 38.9 at the end of 2002, reaching at the level of 119 billion kWh's. New power reactors, KSNP's (Korea Standard Nuclear Power Plant) are fully based on the domestic technologies. More advanced reactors such as KNGR (Korea Next Generation Reactor) will be commercialized soon. Even though the front end nuclear cycle enjoys one of the best positions in the world, there have been some chronical problems in the back end fuel cycle. That's the one of the reason why we need more active R&D programs in Korea and active international and regional cooperation in this area. The everlasting NIMBY problem hinders the implementation of the nation's radioactive waste management program. We expect that the storage capacity for the LILW(Low and Intermediate Level radioactive Waste) will be dried out soon. The situation for the spent fuel storage is also not so favorable too. The storage pools for spent fuel are being filled rapidly so that in 2008, some AR pools cannot accommodate any more new spent nuclear fuels. The Korean Government in strong association with utilities and national academic and R&D institutes have tried its best effort to secure the site for a LILW repository and a AFR site. Finally, one local community, Buan in Jeonbook Province, submitted the petition for the site. At the end of the last July, the Government announced that the Wido, a small island in Buan, is suitable for the national complex site. The special force team headed by Dr IS Chang, president of KAERI teamed with Government officials and many prominent scholars and journalists agreed that by the evidences from the preliminary site investigation, they could not find any reason for rejecting the local community's offer.

  • PDF

A Study on the Airflow Distribution in the Diagonal Ventilation Circuit for the Design of a High Level Radioactive Waste Repository (고준위 방사성 폐기물 처분장 설계를 위한 Diagonal 환기 회로 내 공기량 분배에 관한 연구)

  • Hwang, In-Phil;Choi, Heui-Joo;Roh, Jang-Hoon;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.22 no.3
    • /
    • pp.173-180
    • /
    • 2012
  • In this study, diagonal ventilation circuits that are advantageous in air flow direction control were studied. Based on the results of the study, it could be seen that air volumes in diagonal ventilation circuits could also be calculated using numerical formulas or programs if the air volumes and air flow directions to be infused into diagonal branches are determined in advance as with other serial/parallel circuits. To apply the results, design plans for high level radioactive waste repositories applied with diagonal ventilation circuits and parallel ventilation circuits. To compared the each design plans and obtain expected operation results, ventilation network simulations were conducted through the Ventsim program which is a ventilation networking program. Based on the results, in the case of diagonal repositories that was expected to cause great increases in resistance, fan pressure was 1570 pa, total flux was 84 $m^3/s$, fan efficiency was 76.4%, fan power consumption was 181.2 kW and annual fan operating costs were 178,710,838 and thus maximum around 8% differences were shown in pressure and flux values and a difference of around 1.5% was shown in terms of operating costs.