• 제목/요약/키워드: Radioactive waste management

검색결과 333건 처리시간 0.036초

WASTE MANAGEMENT IN DECOMMISSIONING PROJECTS AT KAERI

  • Hong Sang-Bum;Park Jin-Ho
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2005년도 Proceedings of The 6th korea-china joint workshop on nuclear waste management
    • /
    • pp.290-299
    • /
    • 2005
  • Two decommissioning projects are carried out at the KAERI (Korean Atomic Energy Research Institute), one for the Korea research reactors, KRR-1 and KRR-2, and another for the uranium conversion plant (UCP). The concept of the management of the wastes from the decommissioning sites was reviewed with a relation of the decommissioning strategies, technologies for the treatment and the decontamination, and the characteristics of waste. All the liquid waste generated from KRR-1 and KRR-2 decommissioning site is evaporated by a solar evaporation facility and all the liquid waste from the UCP is treated together with lagoon sludge waste. The solid wastes from the decommissioning sites are categorized into three groups; not contaminated, restricted releasable and radioactive waste. The not-contaminated waste will be reused and/or disposed at an industrial disposal site, and the releasable waste is stored for the future disposal at the KAERI. The radioactive waste is packed in containers, and will be stored at the decommissioning sites till they are sent to a national repository site. The reduction of the radioactive solid waste is one of the strategies for the decommissioning projects and could be achieved by the repeated decontamination. By the achievement of the minimization strategy, the amount of radioactive waste was reduced and the disposal cost will be reduced, but the cost for manpower, for direct materials and for administration was increased.

  • PDF

Preparation of the Applicable Regulatory Guideline on Mixed Waste in Korea Based on the Analysis of US Laws and Regulations

  • Sim, Eun-Jin;Lee, Sun-Kee;Kim, Chang-Lak;Kim, Tae-Man
    • 방사성폐기물학회지
    • /
    • 제19권1호
    • /
    • pp.141-160
    • /
    • 2021
  • Unit 1 of the Kori Nuclear Power Plant (NPP) and Unit 1 of the Wolsong NPP are being prepared for decommissioning; their decommissioning is expected to generate large amounts of intermediate-level, low-level, and very low level Waste. Mixed waste containing both radioactive and hazardous substances is expected to be produced. Nevertheless, laws and regulations, such as the Korean Nuclear Safety Act and Waste Management Act, do not define clear regulatory guidelines for mixed waste. However, the United States has strictly enforced regulations on mixed waste, focusing on the human health and environmental effects of its hazardous components. The U.S. Nuclear Regulatory Commission and the U.S. Department of Energy regulate the radioactive components of mixed waste under the Atomic Energy Act. The U.S. Environmental Protection Agency regulates the hazardous waste component of mixed waste under the Resource Conservation and Recovery Act. In this study, the laws, regulations, and authorities pertaining to mixed waste in the United States are reviewed. Through comparison and analysis with waste management laws and regulations in Korea, a treatment direction for mixed waste is suggested. Such a treatment for mixed waste will increase the efficiency of managing mixed waste when decommissioning NPPs in the near future.

Radiation and Decommissioning Laboratory, an R&D Center for the Back-end Cycle of Nuclear Power Plants

  • Cheon-Woo Kim
    • 방사성폐기물학회지
    • /
    • 제21권3호
    • /
    • pp.419-425
    • /
    • 2023
  • The Radiation and Decommissioning Laboratory of Central Research Institute (CRI) of Korea Hydro and Nuclear Power Co. (KHNP) performs research to technically support the effective management of radiological hazards to avoid risks to civilians, the workers, and the environment from the radiological risks. The laboratory mainly consists of three technical groups: decommissioning and SF technology group, radiation and chemistry group, and radwaste and environment group. The groups carry out various R&D such as decommissioning, spent fuel management, radiation protection, water chemistry management, and radioactive waste management. The laboratory also technically supports the calibration of radiometric instruments as a Korea Laboratory Accreditation Scheme (KOLAS), approval for decommissioning, guidance for radioactive waste management, state-of-the-art technology evaluations, and technology transfer.

The Study on the Way of Radioactive Waste Disposal in China

  • Keyan Teng;Hao Peng;Caixia Lv;Han Wu
    • 방사성폐기물학회지
    • /
    • 제20권4호
    • /
    • pp.533-540
    • /
    • 2022
  • Because of the massive development of nuclear power plants in China in recent years, China is facing the challenge of radioactive waste disposal. China has established complete regulatory requirements for radioactive waste disposal, but it also has encountered problems and challenges in low-level radioactive waste disposal in terms of management, selection of disposal facility sites, and implementation of a site selection plan. Three low-level radioactive waste disposal facilities that have been operated in China are described, and their activity limits, locations, and capacities are also outlined. The connotations of "regional" and "centralized" disposal policies are discussed in light of the characteristics of the radioactive waste. The characteristics and advantages of the regional and centralized disposal policies are compared. It is concluded that the regional disposal policy adopted in 1992 can no longer meet the current disposal needs, and China should adopt a combination of the two disposal policies to solve the problem of radioactive waste disposal.

Development of integrated waste management options for irradiated graphite

  • Wareing, Alan;Abrahamsen-Mills, Liam;Fowler, Linda;Grave, Michael;Jarvis, Richard;Metcalfe, Martin;Norris, Simon;Banford, Anthony William
    • Nuclear Engineering and Technology
    • /
    • 제49권5호
    • /
    • pp.1010-1018
    • /
    • 2017
  • The European Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project sought to develop best practices in the retrieval, treatment, and disposal of irradiated graphite including other irradiated carbonaceous waste such as structural material made of graphite, nongraphitized carbon bricks, and fuel coatings. Emphasis was given on legacy irradiated graphite, as this represents a significant inventory in respective national waste management programs. This paper provides an overview of the characteristics of graphite irradiated during its use, primarily as a moderator material, within nuclear reactors. It describes the potential techniques applicable to the retrieval, treatment, recycling/reuse, and disposal of these graphite wastes. Considering the lifecycle of nuclear graphite, from manufacture to final disposal, a number of waste management options have been developed. These options consider the techniques and technologies required to address each stage of the lifecycle, such as segregation, treatment, recycle, and ultimate disposal in a radioactive waste repository, providing a toolbox to aid operators and regulators to determine the most appropriate management strategy. It is noted that national waste management programs currently have, or are in the process of developing, respective approaches to irradiated graphite management. The output of the Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project is intended to aid these considerations, rather than dictate them.