• Title/Summary/Keyword: Radioactive Source

Search Result 289, Processing Time 0.021 seconds

Development of Statistical Package for Uncertainty and Sensitivity Analysis(SPUSA) and Application to High Level Waste Repostitory System (불확실도와 민감도 분석용 통계 패키지(SPUSA)개발 및 고준위 방사성 폐기물 처분 계통에의 응용)

  • Kim, Tae-Woon;Cho, Won-Jin;Chang, Soon-Heung;Le, Byung-Ho
    • Nuclear Engineering and Technology
    • /
    • v.19 no.4
    • /
    • pp.249-265
    • /
    • 1987
  • For the probabilistic risk assessment of the high level radioactive waste repository, some methods have been proposed up to now. Since the system has highly uncertain input parameters, the evaluated risk for some input parameter values has high uncertainty. In this paper, methods of uncertainty and sensitivity analysis are devised to analyse systematically these factors and applied to a probabilistic risk assessment model of the high level waste repository, The statistical package SPUSA developed through this study can be used for any other fields, e.g., statistical thermal margin analysis, source term uncertainty analysis, etc.

  • PDF

Estimation of natural radionuclide and exhalation rates of environmental radioactive pollutants from the soil of northern India

  • Devi, Vandana;Chauhan, Rishi Pal
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1289-1296
    • /
    • 2020
  • The estimation of radioactivity level is vital for population health risk assessment and geological point of view and can be evaluated as rate of exhalation and source concentration (226Ra, 232Th and 40K). The present study deals with the soil samples for investigation of radionuclides content and exhalation rates of radon -thoron gas from different sites in northern Haryana, India. Absorbed dose and associated index estimated in the present study are the measures of environmental radioactivity to inhalation dose. Effective doses received by different tissues and organs by considering different occupancy and conditions are also measured. Exhalation rates of radon and thoron are measured with active scintillation monitors based on alpha spectroscopy namely scintillation radon (SRM) and thoron (STM) monitors respectively. Sample height was optimized before measurement of thoron exhalation rate using STM. Average values of radon and thoron exhalation are found 16.6 ± 0.7 mBqkg-1h-1 and 132.1 ± 2.6 mBqm-2s-1 respectively. Also, a simple approach was also adopted, to evaluate the thoron exhalation which accomplished a lot of challenges, the results are compared with the data obtained experimentally. The study is useful in the nationwide mapping of radon and thoron exhalation rates for understanding the environmental radioactivity status.

MIGSHIELD: A new model-based interactive point kernel gamma ray shielding package for virtual environment

  • Li, Mengkun;Xu, Zhihui;Li, Wei;Yang, Jun;Yang, Ming;Lu, Hongxin;Dai, Xinyu
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1557-1564
    • /
    • 2020
  • In this paper, 3D model-based interactive gamma ray shielding package (MIGSHIELD) is developed in virtual reality platform for windows operating system. In MIGSHIELD, the computational methodology is based on point kernel algorithm (PK), several key parameters of PK are obtained using new technique and new methods. MIGSHIELD has interactive capability with virtual world. The main features made in the MIGSHIELD are (i) handling of physical information from virtual world, (ii) handling of arbitrary shapes radioactive source, (iii) calculating the mean free path of gamma ray, (iv) providing interactive function between PK and virtual world, (v) making better use of PK for virtual simulation, (vi) plug and play. The developed package will be of immense use for calculations involving radiation dose assessment in nuclear safety and contributing to fast radiation simulation for virtual nuclear facilities.

Image Recovery Using Nonlinear Modeling of Industrial Radiography (산업용방사선영상의 비선형모델링에 의한 영상복구)

  • Hwang, Jung-Won;Hwang, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.4
    • /
    • pp.71-77
    • /
    • 2008
  • This paper presents a methodology for recovering the industrial radiographic images from the effects of nonlinear distortion. Analytical approach based on the inverse square law and Beer's law is developed in order to improve a mathematic model of nonlinear type. The geometric effect due to dimensions of the radioactive source appeals on the digitized images. The relation that expresses parameters values(angle, position, absorption coefficient, length, width and pixel account) is defined in this model, matching with the sample image. To perform the search for image recovery most similar to the model, a correction procedure is designed. The application of this method on the radiographic images of steel tubes is shown and recovered results are discussed.

CURRENT RESEARCH AND DEVELOPMENT ACTIVITIES ON FISSION PRODUCTS AND HYDROGEN RISK AFTER THE ACCIDENT AT FUKUSHIMA DAIICHI NUCLEAR POWER STATION

  • NISHIMURA, TAKESHI;HOSHI, HARUTAKA;HOTTA, AKITOSHI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • After the Fukushima Daiichi nuclear power plant (NPP) accident, new regulatory requirements were enforced in July 2013 and a backfit was required for all existing nuclear power plants. It is required to take measures to prevent severe accidents and mitigate their radiological consequences. The Regulatory Standard and Research Department, Secretariat of Nuclear Regulation Authority (S/NRA/R) has been conducting numerical studies and experimental studies on relevant severe accident phenomena and countermeasures. This article highlights fission product (FP) release and hydrogen risk as two major areas. Relevant activities in the S/NRA/R are briefly introduced, as follows: 1. For FP release: Identifying the source terms and leak mechanisms is a key issue from the viewpoint of understanding the progression of accident phenomena and planning effective countermeasures that take into account vulnerabilities of containment under severe accident conditions. To resolve these issues, the activities focus on wet well venting, pool scrubbing, iodine chemistry (in-vessel and ex-vessel), containment failure mode, and treatment of radioactive liquid effluent. 2. For hydrogen risk: because of three incidents of hydrogen explosion in reactor buildings, a comprehensive reinforcement of the hydrogen risk management has been a high priority topic. Therefore, the activities in evaluation methods focus on hydrogen generation, hydrogen distribution, and hydrogen combustion.

Development of low-cost, compact, real-time, and wireless radiation monitoring system in underwater environment

  • Kim, Jeong Ho;Park, Ki Hyun;Joo, Koan Sik
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.801-805
    • /
    • 2018
  • In this study, an underwater radiation detector was built using a GAGG(Ce) scintillator and silicon photomultiplier to establish an underwater radiation exposure monitoring system. The GAGG(Ce) scintillator is suitable for small radiation detectors as it strongly absorbs gamma rays and has a high light emission rate with no deliquescent properties. Additionally, the silicon photomultiplier is a light sensor with characteristics such as small size and low applied voltage. Further, a program and mobile app were developed to monitor the radiation coefficient values generated from the detector. According to the results of the evaluation of the characteristics of the underwater radiation monitoring system, when tested for its responsiveness to radiation intensity and reactivity, the system exhibited a coefficient of determination of at least 0.99 with respect to the radiation source distance. Additionally, when tested for its underwater environmental temperature dependence, the monitoring system exhibited an increase in the count rate up to a certain temperature because of the increasing dark current and a decrease in the count rate because of decreasing overvoltage. Extended studies based on the results of this study are expected to greatly contribute to immediate and continuing evaluation of the degree of radioactive contamination in underwater environments.

Background reduction by Cu/Pb shielding and efficiency study of NaI(TI) detector

  • Ramadhan, Revink A.;Abdullah, Khairi MS.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.462-469
    • /
    • 2018
  • The background spectrum of a $3^{{\prime}{\prime}}{\times}3^{{\prime}{\prime}}$ NaI(Tl) well-type scintillation SILENA detector was measured without shielding, in 6 cm thick lead shielding, and with 2 mm thick electrolytic copper covering the detector inside the lead shielding. The relative remaining background of the lead shield lined with copper was found to be ideal for low-level environmental radioactive spectroscopy. The background total count rate in the (20-2160 KeV) was reduced 28.7 times by the lead and 29 times by the Cu + Pb shielding. The effective reduction of background (1.04) by the copper mainly appeared in the energy range from X-ray up to 500 KeV, while for the total energy range the ratio is 1.01 relative to the lead only. In addition, a strong relation between the full-energy peak absolute efficiency and the detector well height was found using gamma-ray isotropic radiation point sources placed inside the detector well. The full-energy peak efficiency at a midpoint of the well (at 2.5 cm) is three times greater than that on the detector surface. The energy calibrations and the resolution of any single energy line are independent of the locations of the gamma source inside or outside of the well.

Determination of Si (Li) Detector Efficiency Using Electro-Deposition Sources in 5-15 keV Photon Energy Range (5-15 keV 에너지 범위에서 전기증착 선원을 사용한 Si (Li) 검출기 효율결정)

  • Jeon, Woo-Ju;Park, Tae-Soon;Hwang, Sun-Tae;Joo, Koan-Sik
    • Nuclear Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.548-554
    • /
    • 1994
  • The full-energy peak efficiency for a collimated geometry of a Si (Li) detector has been experimentally determined using the electro-deposition sources. The radioactive sources of $^{51}$ Cr, $^{54}$ Mn, $^{57}$ Co and $^{65}$ Zn nuclides are prepared by the electro-deposition method. The measured efficiency values are corrected for the escape losses due to the K X-rays of silicon and the absorptions in materials related to source-to-detector geometry. The corrected efficiency values have turned out to be nearly constant regardless of photon energy.

  • PDF

Comparison of Radiation Exposures from Coal-fired and Nuclear Power Plants (석탄발전과 원자력발전에 의한 방사선피폭 비교 연구)

  • Han, Moon-Hee;Kim, Byung-Woo;Yoo, Byung-Sun;Lee, Jeong-Ho
    • Nuclear Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.99-106
    • /
    • 1987
  • Comparison study on the radiological effects by radionuclides from hypothetical 1,000MWe coal-fired power station and nuclear power plant is made. This paper describes the radiological effects only for gaseous effluents released in normal operation. Source terms for coal-fired Power station are quoted from foreign data and those for nuclear power plant are calculated for reference power plant. Gaussian plume model is used to assess atmospheric dispersion of radioactive effluents based on one year meteorological data of Kori site and individual doses are calculated at the maximum X/Q point. Doses from nuclear power plant are slightly more than those from coal-fred power plant. In the case of coal-fired power plant, doses by ingestion of contaminated vegetation are 73.5% of total doses.

  • PDF

An Experimental Study on Density Tool Calibration (밀도검층 검출기 보정에 관한 기초 연구)

  • Kim, Yeonghwa;Kim, Kiju;Lim, Heontae;Kim, Jihoon;Kong, Nam-Young
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.4
    • /
    • pp.237-245
    • /
    • 2004
  • Series of basic experiments for current density calibration by user process and for density calibration using geophysical model borehole were made. We tried to find the sonde response characteristics for current calibration using water and aluminium field jig, and using the equation of half life of 137Cs source. The result of calibration test made in a geophysical model borehole built first in Korea shows a perfect linear calibration equation. By adopting this calibration equation we could estimate the limitation as well as possibility of current density calibration by user process.

  • PDF