• Title/Summary/Keyword: Radioactive Inventory

Search Result 65, Processing Time 0.029 seconds

Long-term Dissolution Behavior of Cesium from Spent PWR Fuel in Contact with Compacted Bentonite under Synthetic Granitic Groundwater

  • Chun, Kwan-Sik;Kim, Seung-Soo;Bak, Seong-Jea;Park, Jongwon
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.167-173
    • /
    • 2004
  • The amount of cesium released from the leaching of spent fuels in contact with and without the compacted bentonite bloc]t which was compacted as the density of $1.4g/\textrm{cm}^3$, up to 5.7 years were measured and the empirical formula of the fractional release rate of cesium were derived from these measured values. The empirical formulas show that the long-term release rate of cesium under a repository would become a constant, as about $3{\times}10_{-6}$ fraction/day, after a certain period. The cumulative fractions of cesium released from the spent fuel with bentonite and with copper and stainless steel sheets were steadily increased, but the fraction from bare fuel was rapidly increased and then sluggishly increased. However, the remained value except its gap inventory from the cumulative fraction of cesium released from bare fuel was almost very close to the others. This suggests that the initial release of cesium from bare fuel might be dependant on its gap inventory.

  • PDF

Activation Analysis of Dual-purpose Metal Cask After the End of Design Lifetime for Decommission (설계수명 이후 해체를 위한 금속 겸용용기의 방사화 특성 평가)

  • Kim, Tae-Man;Ku, Ji-Young;Dho, Ho-Seog;Cho, Chun-Hyung;Ko, Jae-Hun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.343-356
    • /
    • 2016
  • The Korea Radioactive Waste Agency (KORAD) has developed a dual-purpose metal cask for the dry storage of spent nuclear fuel that has been generated by domestic light-water reactors. The metal cask was designed in compliance with international and domestic technology standards, and safety was the most important consideration in developing the design. It was designed to maintain its integrity for 50 years in terms of major safety factors. The metal cask ensures the minimization of waste generated by maintenance activities during the storage period as well as the safe management of the waste. An activation evaluation of the main body, which includes internal and external components of metal casks whose design lifetime has expired, provides quantitative data on their radioactive inventory. The radioactive inventory of the main body and the components of the metal cask were calculated by applying the MCNP5 ORIGEN-2 evaluation system and by considering each component's chemical composition, neutron flux distribution, and reaction rate, as well as the duration of neutron irradiation during the storage period. The evaluation results revealed that 10 years after the end of the cask's design life, $^{60}Co$ had greater radioactivity than other nuclides among the metal materials. In the case of the neutron shield, nuclides that emit high-energy gamma rays such as $^{28}Al$ and $^{24}Na$ had greater radioactivity immediately after the design lifetime. However, their radioactivity level became negligible after six months due to their short half-life. The surface exposure dose rates of the canister and the main body of the metal cask from which the spent nuclear fuel had been removed with expiration of the design lifetime were determined to be at very low levels, and the radiation exposure doses to which radiation workers were subjected during the decommissioning process appeared to be at insignificant levels. The evaluations of this study strongly suggest that the nuclide inventory of a spent nuclear fuel metal cask can be utilized as basic data when decommissioning of a metal cask is planned, for example, for the development of a decommissioning plan, the determination of a decommissioning method, the estimation of radiation exposure to workers engaged in decommissioning operations, the management/reuse of radioactive wastes, etc.

Estimation of Radioactive Inventory for a major component of Reactor in Decommissioning (해체시 원자로 주요 구성품에 대한 방사능 재고량 평가)

  • Hak-Soo Kim;Ki-Doo Kang;Kyoung-Doek Kim;Chan-Woo Jeong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.1
    • /
    • pp.69-75
    • /
    • 2004
  • DORT and ORIGEN2 code were used for calculation of neutron flux and inventory in reactor pressure vessel(RPV) of Kori unit-1, To calculate neutron flux using DORT code, the reactor was divided into 94 mesh from the center of core to RPV and from 0 to 45 degree along the azimuth. The cross-sections of main nuclides were recalculated using neutron flux in the RPV region. The results showed that 95% of the total activity in RPV came from the nuclides of $^{55}$ Fe, $^{60}$ Co, $^{59}$ Ni and $^{63}$ Ni. And the total activity with cooling of more than 50 years after decommissioning was no more than 0.2% of at the time of shutdown. Considering the weight of RPV is 210 tons, the initial total activity of RPV reached 5.25${\times}$10$^{6}$ GBq. To verify results of ORIGEN2 calculation, comparison between calculated and measured value at RPV of Kori unit-1 was peformed. The comparison results showed a good agreement.

  • PDF

Preparation and Management of the Input Data for the Safety Assessment of Low- and Intermediate-level Radioactive Waste Disposal Facility in Korea (중·저준위 방사성폐기물 처분시설 안전성평가를 위한 입력데이터 설정 및 관리에 대한 고찰)

  • Park, Jin Beak;Kim, Hyun-Joo;Lee, Dong-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.4
    • /
    • pp.345-361
    • /
    • 2014
  • The systematic quality assurance activities on documents of the safety assessment are required for the safety case of the low- and intermediate-level radioactive waste disposal facility. In this paper, quality assurance system focused on the input data including the site characterization, groundwater flow, system design and monitoring are prepared and discussed. Rule for the input data selection is suggested and applied for the safety assessment which is based on the in-situ/experiment observations, final facility design and waste pileup plan, engineered barrier, field monitoring, recent biosphere, and radionuclide inventory. The reduction of data uncertainty will be expected to contribute to the safety of disposal facility further.

Implementation of a Management Applied Program for Liquid Radioactive Waste Treatment (방사성 액체폐기물 처리공정 관리 응용프로그램 구현)

  • 이영희;안섬진;조한석;손종식
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.141-148
    • /
    • 2003
  • A data collection of a liquid radioactive waste treatment process of a research organization became necessary while developing the RAWMIS(Radioactive Waste Management Integration System) which it can generate personal history management for efficient management of a waste, documents, all kinds of statistics. This paper introduces an input and output application program design to do to database with data in the results and a stream process of a treatment that analyzed the waste occurrence present situation and data by treatment process. Data on the actual treatment process that is not limited experiment improve by a document, human traces, saving of material resources and improve with efficiency of tracking about a radioactive waste and a process and give help to radioactive waste material valance and inventory study.

  • PDF

Assessment of the Radiological Inventory for the Reactor at Kori NPP Using In-Situ Measurement Technology (In-Situ 측정법을 이용한 고리 원자로 방사선원항 평가)

  • Jeong, Hyun Chul;Jeong, Sung Yeop
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.2
    • /
    • pp.171-178
    • /
    • 2014
  • After the expiration of operating license of a plant, all infrastructures within the plant must be safely dismantled to the point that it no longer requires measures for radiation protection. Despite the fact that Kori 1 and Wolsong 1 are close to the expiration of their operating license, sufficient technologies for radiological characterization, decontamination and dismantling is still under development. The purpose of this study is to develop one of methods for radiological inventory assessment on measuring object by using direct measure of large component with In-Situ measurement technique. Radiological inventory was assessed by analyzing nuclide using portable gamma spectroscopy without dismantling reactor head, and the result of direct measurement was supplemented by performing indirect measurement. Radiochemical analysis were performed on surface contamination samples as well. During the study, radiological inventory of reactor vessel calculated expanding the result. Based on the result and the radioactivity variation of each radionuclides time frame for decommissioning can be decided. Thus, it is expected that during the decommissioning of plants, the result of this study will contribute to the reduction of radiation exposure to workers.

Study on the Separation of $^{55}Fe$, $^{90}FSr$$^{94}Nb$ in Radioactive Wastes (방사성 폐기물 내 $^{55}Fe$, $^{90}FSr$$^{94}Nb$의 분리 연구)

  • 이창헌;정기철;임석남;김원호;지광용
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.54-59
    • /
    • 2003
  • Several radionuclides are considered as an object of the assesment to develop a scaling factor and a periodical verification method which are needed for the evaluation of radionuclide inventory of various radioactive wastes from nuclear power plants in Korea. A selective separation of $^{55}Fe$, $^{90}FSr$$^{94}Nb$ which should be recovered individually for the radiochemical analysis was described in detail. Sorption and desorption behaviours of ion exchange and extraction chromatographic resins for Fe, Sr, Nb and co-existing metal ions were Investigated using an artificial waste solution simulated of chemical composition of real radioactive wastes. Separation conditions available for the sequential recovery of these metal ions from a single sample were optimized to minimize a discharge of radioactive wastes produced through the analytical process and a radiation exposure to analysts. Their recovery yields were measured with reliability.

  • PDF

Development of integrated waste management options for irradiated graphite

  • Wareing, Alan;Abrahamsen-Mills, Liam;Fowler, Linda;Grave, Michael;Jarvis, Richard;Metcalfe, Martin;Norris, Simon;Banford, Anthony William
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.1010-1018
    • /
    • 2017
  • The European Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project sought to develop best practices in the retrieval, treatment, and disposal of irradiated graphite including other irradiated carbonaceous waste such as structural material made of graphite, nongraphitized carbon bricks, and fuel coatings. Emphasis was given on legacy irradiated graphite, as this represents a significant inventory in respective national waste management programs. This paper provides an overview of the characteristics of graphite irradiated during its use, primarily as a moderator material, within nuclear reactors. It describes the potential techniques applicable to the retrieval, treatment, recycling/reuse, and disposal of these graphite wastes. Considering the lifecycle of nuclear graphite, from manufacture to final disposal, a number of waste management options have been developed. These options consider the techniques and technologies required to address each stage of the lifecycle, such as segregation, treatment, recycle, and ultimate disposal in a radioactive waste repository, providing a toolbox to aid operators and regulators to determine the most appropriate management strategy. It is noted that national waste management programs currently have, or are in the process of developing, respective approaches to irradiated graphite management. The output of the Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project is intended to aid these considerations, rather than dictate them.

Comprehensive Development Plans for the Low- and Intermediate-Level Radioactive Waste Disposal Facility in Korea and Preliminary Safety Assessment (우리나라 중·저준위 방사성폐기물 처분시설 종합개발계획(안)과 예비안전성평가)

  • Jung, Kang Il;Kim, Jin Hyeong;Kwon, Mi Jin;Jeong, Mi Seon;Hong, Sung Wook;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.385-410
    • /
    • 2016
  • The disposal facility in Gyeongju is planning to dispose of 800,000 packages of low- and intermediate- level radioactive waste. This facility will be developed as a complex disposal facility that has various types of disposal facilities and accompanying management. In this study, based on the comprehensive development plan of the disposal facility, a preliminary post-closure safety assessment is performed to predict the phase development of the total capacity for the 800,000 packages to be disposed of at the site. The results for each scenario meet the performance target of the disposal facility. The assessment revealed that there is a significant impact of the inventory of intermediate-level radionuclide waste on the safety evaluation. Due to this finding, we introduce a disposal limit value for intermediate-level radioactive waste. With stepwise development of safety case, this development plan will increase the safety of disposal facilities by reducing uncertainties within the future development of the underground silo disposal facilities.

A Study on Radioactive Source-term Assessment Method for Decommissioning PWR Primary System (PWR 1차계통내 해체 방사성선원항 평가방법에 관한 연구)

  • Song, Jong Soon;Kim, Hyun-Min;Lee, Sang-Heon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.2
    • /
    • pp.153-164
    • /
    • 2014
  • Currently, there are many programs which are now being developed or already developed to predict radionuclide and corrosion product at the stage of designing NPP. However, since there are not many developments in evaluating quantity of activation corrosion products occurring when disassembling a nuclear power plant there exist some difficulties in calculating accurately. In order to evaluate activation products inventory for the research of effect of neutron activation in the reactor vessel, component of nuclear reactor and adjacent structures, it should be evaluated by using operation history of nuclear reactor, material composition of structure and average neutron flux in every field representing fixed structure of nuclear reactor. In this study, CORA, PACTOLE, CRUDSIM, CREAT and ACE codes are analyzed to predict the quantity of radionuclide and corrosion product of primary reactor which is used at the stage of designing. As a future study, the accuracy in calculating the quantity of product corrosion can be increase by finding out the possibility of use and improvement for evaluation of the decontamination.