• Title/Summary/Keyword: Radio-tag

Search Result 383, Processing Time 0.019 seconds

The Variation of Tagging Contrast-to-Noise Radio (CNR) of SPAMM Image by Modulation of Tagline Spacing (Tagline 간격의 조절을 통한 SPAMM 영상에서의 Tagging 대조도 대 잡음비의 변화)

  • 강원석;최병욱;최규옥;이상호;홍순일;정해조;김희중
    • Progress in Medical Physics
    • /
    • v.13 no.4
    • /
    • pp.224-228
    • /
    • 2002
  • Myocardial tagging technique such as spatial modulation of magnetization (SPAMM) allows the study of myocardial motion with high accuracy. However, the accuracy of the estimation of tag intersection can be affected by tagline spacing. The aim of this study was to investigate the relationship between tagline spacing of SPAMM image and tagging contrast-to-noise ratio (CNR) in in-vivo study. Two healthy volunteers were undergone electrocardiographically triggered MR imaging with SPAMM-based tagging pulse sequence at a 1.5T MR scanner. Horizontally modulated stripe patterns were imposed with a range from 3.6 to 9.6 mm of tagline spacing. Images of the left ventricle(LV) wall were acquired at the mid-ventricle level during cardiac cycle with FE-EPI (TR/TE = 5.8/2.2 msec, FA= 10$^{\circ}$. Tagging CNR for each image was calculated with a software which developed in our group. During contraction, tagging CNR was more rapidly decreased in case of narrow tagline spacing than in case of wide tagline spacing. In the same heart phase, CNR was increased corresponding with tagline spacing. Especially, at the fully contracted heart phase, CNR was more rapidly increased than the other heart phases as a function of tagline spacing. The results indicated that the optimization of tagline spacing provides better tagging CNR in order to analyze the myocardial motion more accurately.

  • PDF

A Study on the Development of Field Management System for Underground utility using Self-levelling marker and DGPS. (자동수평마커와 DGPS를 이용한 지하시설물의 현장관리시스템 개발에 관한 연구)

  • Kim, In-Seup
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.6
    • /
    • pp.733-739
    • /
    • 2009
  • Recently it is being increased rapidly to install magnetic marker and RFID tag on the underground utility lines before backfilling to ensure effective it's management. However, due to changes an attitude and damages of sensors. By pressure and vibration during soil compacting, detecting rate is significantly reduced as well as it allows to use only one line of various pipes since it has an unique frequency. Also it is required too long time to reach to target point with an non-accurate navigational GPS receiver and hard to update existing data base with a manual input of new data in the field. To improve these problems, the researcher developed the field management system that apply with ball typed self-levelling marker which is free from the changes of attitude for sensors during compaction as well as has various radio frequency applicable to many kind of pipes and ensure fast positioning to target point using an incorporated system with PDA based DGPS receiver which allows loading a field GIS software and RFID detector. Further, it provides with viewing all of RFID data on the DGPS receiver screen directly and also input new data to existing data base in the field automatically.

A Wireless Sensor Network Systems to Identify User and Detect Location Transition for Smart Home (지능형 주택을 위한 구성원 식별 및 위치 이동 감지 센서 네트워크 시스템)

  • Lee, Seon-Woo;Yang, Seung-Yong
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.5
    • /
    • pp.396-402
    • /
    • 2010
  • The tracking of current location of residents is an essential requirement for context-aware service of smart houses. This paper presents a wireless sensor network system which could detect location transition such as entrance and exit to a room and also identify the user who passed the room, without duty of wearing any sort of tag. We designed new sensor node to solve the problem of short operation lifetime of previous work[1] which has two pyroelectric infrared (PIR) sensors and an ultrasonic sensor, as well as a 2.4 GHz radio frequency wireless transceiver. The proposed user identification method is to discriminate a person based on his/her height by using an ultrasonic sensor. The detection idea of entering/exiting behavior is based on order of triggering of two PIR sensors. The topology of the developed wireless sensor network system is simple star structure in which each sensor node is connected to one sink node directly. We evaluated the proposed sensing system with a set of experiments for three subjects in a model house. The experimental result shows that the averaged recognition rate of user identification is 81.3% for three persons. and perfect entering/exiting behavior detection performance.