• Title/Summary/Keyword: Radio-based

Search Result 3,011, Processing Time 0.026 seconds

Study on Separation Distance to Protect Radio Service from Inductive System (유도성 시스템으로부터 무선기기 보호를 위한 이격 거리에 관한 연구)

  • Lee, Il-Kyoo;Shim, Yong-Sup;Min, Kyoung-Il;Cha, Jae-Sang;Lee, Kyong-Gun
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.103-108
    • /
    • 2011
  • This paper is related radio interference from inductive system to radio device in home and industrial environment according to increasing the usage of inductive system. In order to analyze interference from magnetic field strength of inductive system, interference model was suggested and explain the method to calculate separation distance by using conversion that from magnetic field strength to magnetic dipole moment based on suggested interference model. Also, scenario that interference occur between inductive system and radio device was shown and the separation distance between inductive system and radio device was calculate with that scenario. The suggested method in this paper will be used to secure the compatibility between inductive system and radio device.

Efficient Energy Detection Method in Poor Radio Environment for Cognitive Radio System (Cognitive Radio 시스템을 위한 열악한 통신 환경에서 효과적인 에너지 검출방법)

  • Hyun, Young-Ju;Kim, Kyung-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.7
    • /
    • pp.60-67
    • /
    • 2007
  • The spectrum sensing is important for decision of using frequency band. It checks the frequency band for cognitive radio system. In this paper, we apply autocorrelation function to the energy detection method. We use the autocorrelation function to improve the performance of spectrum sensing method based on the energy detection method. This method is different from cyclostationary process method where parameters such as the mean or the autocorrelation function are time-varying periodically. And we propose improved method that is robust in poor radio environment. If the proposed method applies for sensing in the cognitive radio system, it will have the structural simplicity and the fast computation of spectrum sensing.

IONIZED GAS KINEMATICS ALONG THE RADIO JET IN TYPE 2 AGNS

  • LE, HUYNH ANH N.;WOO, JONG-HAK;SON, DONGHOON
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.51.3-51.3
    • /
    • 2017
  • To investigate the connection between radio activity and AGN outflows, we present a study of ionized gas kinematics by using [O III] ${\lambda}5007$ emission line along the radio jet for six radio AGNs. These AGNs are selected based on the radioactivity (L1.4GHz ${\geq}$ 1039.8 erg s-1) as well as optical properties as type 2 AGNs. By using the high spatial resolution of the Red Channel Cross Dispersed Echellette Spectrograph at the Multiple Mirror Telescope, we investigate in detail the [O III] and stellar kinematics. We spatially resolve and probe the central AGN-photoionization sizes, which is important in understanding the structures and evolutions of galaxies. We find that the typical central AGN-photoionization sizes of our targets are in range of 1.8-3.8 kpc. We study the [O III] kinematics along the radio jets to test whether there is a link between gas outflows in the narrow-line region and radio jet emissions. Contrary to our expectation, we find no evidence that the gas outflows are directly connected to radio jet emission.

  • PDF

Power Saving and Improving the Throughput of Spectrum Sharing in Wideband Cognitive Radio Networks

  • Li, Shiyin;Xiao, Shuyan;Zhang, Maomao;Zhang, Xiaoguang
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.394-405
    • /
    • 2015
  • This paper considers a wideband cognitive radio network which can simultaneously sense multiple narrowband channels and thus aggregate the detected available channels for transmission and proposes a novel cognitive radio system that exhibits improved sensing throughput and can save power consumption of secondary user (SU) compared to the conventional cognitive radio system studied so far. More specifically, under the proposed cognitive radio system, we study the problem of designing the optimal sensing time and power allocation strategy, in order to maximize the ergodic throughput of the proposed cognitive radio system under two different schemes, namely the wideband sensing-based spectrum sharing scheme and the wideband opportunistic spectrum access scheme. In our analysis, besides the average interference power constraint at primary user, the average transmit power constraint of SU is also considered for the two schemes and then a subgradient algorithm is developed to obtain the optimal sensing time and the corresponding power allocation strategy. Finally, numerical simulations are presented to verify the performance of the two proposed schemes.

A STUDY ON THE RADIO PROPAGATION IN THE KOREAN IONOSPHERE (한반도 전리층에서의 전파 전파연구)

  • 배석희;최규홍;육재림;김홍익;민경욱
    • Journal of Astronomy and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.69-88
    • /
    • 1992
  • The effects of the ionosphere on the radio wave propagation are scattering of radio waves, attenuation, angle error, ranging error, and time delay. If ionospheric conditions are suitable, the charged particles can remove energy from radio waves and thus attenuate the signal. Also, a radio wave traveling a path along which the electron density is not constant undergoes changes in direction, positon and time of propagation. The present study is based on Korean ionospheric data obtained at the AnYang Radio Research Institute from Jan. 1985 through Oct. 1989. The data are used to simulate the Korean ionosphere following the Chapman law. The effects of the model ionosphere on the radio wave propagation, such as the angle, position error, time delay, and the attenuation, are studied for the various cases of the wave frequency and the altitude.

  • PDF

Cluster-based Minimum Interference Channel Assignment for Multi-Radio Multi-Channel Wireless Mesh Networks (멀티 라디오 멀티 채널 무선 메쉬 네트워크를 위한 클러스터 기반 최소 간섭 채널 할당)

  • Cha, Si Ho;Ryu, Min Woo;Cho, Kuk Hyun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.3
    • /
    • pp.103-109
    • /
    • 2010
  • Total performance is improved by minimizing the channel interference between links in wireless mesh networks (WMNs). The paper refines on the CB-CA [1] to be suitable for multi-radio multi-channel (MRMC) WMNs. The CB-CA is the cluster-based channel assignment algorithm for one radio three channel WMN based on IEEE 802.11b/g. The CB-CA does not perform the channel scanning and the channel switching between the cluster heads (CHs) and the edge gateway nodes (EGs). However, the use of co-channel for links between CHs and EGs brings the problem of channel interference among many nodes. We propose and evaluate an improved CB-CA algorithm to solve this problem in MRMC WMNs. The proposed algorithm discriminates between transmission channel and receive channel and assigns channels to each interface randomly and advertises this information to neighbor clusters in order to be assigned no-interference channel between clusters. Therefore, the proposed algorithm can minimize the interference between clusters and also improve QoS, since it can use multiple interfaces and multiple channels.

Analysis and Experiment of 2.4GHz Radio Frequency Interference for Wireless Sensor Networks-based Applications (WSNs 기반의 어플리케이션을 위한 2.4GHz 대역의 주파수 간섭 분석 및 검증 실험)

  • Kwon, Jong-Won;Ahn, Gwang-Hoon;Kim, Seok-Rae;Kim, Hie-Sik;Kang, Sang-Hyuk
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.290-292
    • /
    • 2009
  • With advance in technologies for wireless sensor networks(WSNs), 2.4 GHz band has become gradually attractive due to increase in low-power wireless communication devices. Especially ZigBee(IEEE 802.15.4-based) technology whose frequency band includes the 2.4GHz industrial, scientific and medical band providing nearly worldwide availability has been universally applicable to a various remote monitoring system and applications related home network system. However network throughput of these systems is significantly deteriorated due to this ISM band is a license-exemption used in a variety of low-power wireless communication devices. For instance, other IEEE 802 wireless standards such as Bluetooth, WLAN, Wi-Fi and others cause radio interference to ZigBee. The experiments was carried out to analyze radio frequency interference between heterogeneous devices using ISM bands to improve the limited frequency utility factor. Finally this paper suggests a frequency hopping-based adaptive multi-channel methods to decrease interference with empirical results.

  • PDF

A Comparison of Spectrum-Sensing Algorithms Based on Eigenvalues

  • Ali, Syed Sajjad;Liu, Jialong;Liu, Chang;Jin, Minglu
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.4
    • /
    • pp.241-247
    • /
    • 2015
  • Cognitive radio has been attracting increased attention as an effective approach to improving spectrum efficiency. One component of cognitive radio, spectrum sensing, has an important relationship with the performance of cognitive radio. In this paper, after a summary and analysis of the existing spectrum-sensing algorithms, we report that the existing eigenvalue-based semi-blind detection algorithm and blind detection algorithm have not made full use of the eigenvalues of the received signals. Applying multi-antenna systems to cognitive users, we design a variety of spectrum-sensing algorithms based on the joint distribution of the eigenvalues of the received signal. Simulation results validate that the proposed algorithms in this paper are able to detect whether the signal of the primary user exists or not with high probability of detection in an environment with a low signal-to-noise ratio. Compared with traditional algorithms, the new algorithms have the advantages of high detection performance and strong robustness

Reinforce Learning Based Cooperative Sensing for Cognitive Radio Networks (인지 무선 시스템에서 강화학습 기반 협력 센싱 기법)

  • Kim, Do-Yun;Choi, Young-June;Roh, Bong-Soo;Choi, Jeung-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.1043-1050
    • /
    • 2018
  • In this paper, we propose a reinforce learning based on cooperative sensing scheme to select optimal secondary users(SUs) to enhance the detection performance of spectrum sensing in Cognitive radio(CR) networks. The SU with high accuracy is identified based on the similarity between the global sensing result obtained through cooperative sensing and the local sensing result of the SU. A fusion center(FC) uses similarity of SUs as reward value for Q-learning to determine SUs which participate in cooperative sensing with accurate sensing results. The experimental results show that the proposed method improves the detection performance compared to conventional cooperative sensing schemes.

A Spectral Correlation Method for Cognitive Radio based Satellite system. (무선인지기반 위성시스템을 위한 주파수 검출방법)

  • Song, Jeong-Ik;Han, Jeo;Son, Seong-Hwan;Lee, Gyeong-Tak;Kim, Jae-Myeong
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.1
    • /
    • pp.5-11
    • /
    • 2006
  • Cognitive radio, which is designed to dynamically adapt its transmission to its environments is believed to be one of the fundamental techniques for the future spectrum utilization. As the first step of cognitive radio, spectrum sensing is treated as the most important technique. In this paper, we propose a spectral correlation based detection method for spectrum sensing. Based on the cyclostationarity of communication signals, spectral correlation function is used to minimize the effect of random noise and interference. The ROC performance of conventional energy detection is shown. Simulation result show that the proposed detection method outperforms the energy detection and more suitable for spectrum sensing in cognitive radios.

  • PDF