• 제목/요약/키워드: Radio telescopes and instrumentation

검색결과 8건 처리시간 0.022초

THE AUSTRALIA TELESCOPE NATIONAL FACILITY

  • EDWARDS, PHILIP G.
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.655-657
    • /
    • 2015
  • The Australia Telescope National Facility (ATNF) consists of the Parkes and Mopra radio telescopes, and the Australia Telescope Compact Array, with the first elements of the wide-field Australian Square Kilometer Array Pathfinder (ASKAP), currently being commissioned. The capabilities of these facilities are described.

DEVELOPMENT OF A TOY INTERFEROMETER FOR EDUCATION AND OBSERVATION OF SUN AT 21 cm

  • Park, Yong-Sun;Kim, Chang-Hee;Choi, Sang-In;Lee, Joo-Young;Jang, Woo-Min;Kim, Woo-Yeon;Jeong, Dae-Heon
    • 천문학회지
    • /
    • 제41권3호
    • /
    • pp.77-81
    • /
    • 2008
  • As a continuation of a previous work by Park et al. (2006), we have developed a two-element radio interferometer that can measure both the phase and amplitude of a visibility function. Two small radio telescopes with diameters of 2.3 m are used as before, but this time an external reference oscillator is shared by the two telescopes so that the local oscillator frequencies are identical. We do not use a hardware correlator; instead we record signals from the two telescopes onto a PC and then perform software correlation. Complex visibilities are obtained toward the sun at ${\lambda}\;=\;21\;cm$, for 24 baselines with the use of the earth rotation and positional changes of one element, where the maximum baseline length projected onto UV plane is ${\sim}\;90{\lambda}$. As expected, the visibility amplitude decreases with the baseline length, while the phase is almost constant. The image obtained by the Fourier transformation of the visibility function nicely delineates the sun, which is barely resolved due to the limited baseline length. The experiment demonstrates that this system can be used as a "toy" interferometer at least for the education of (under)graduate students.

THE SUBMILLIMETER ARRAY: CURRENT STATUS AND FUTURE PLAN

  • OHASHI NAGAYOSHI
    • 천문학회지
    • /
    • 제38권2호
    • /
    • pp.103-106
    • /
    • 2005
  • The Submillimeter Array (SMA), a collaborative project of the Smithsonian Astrophysical Observatory (SAO) and the Academia Sinica Institute of Astronomy & Astrophysics (ASIAA), has begun operation on Mauna Kea in Hawaii. A total of eight 6-m radio telescopes comprise the array with currently working receiver bands at 230, 345, and 690 GHz. The array will have 8 receiver bands covering the frequency range of 180-900 GHz. The backend is flexible analog-digital correlator with a full bandwidth of 2GHz, which is very powerful to cover several line emissions simultaneously. The current status and future plans of the SMA are described with emphasis on Taiwanese efforts.

DETERMINATION OF THE INVARIANT POINT OF THE KOREAN VLBI NETWORK RADIO TELESCOPES: FIRST RESULTS AT THE ULSAN AND TAMNA OBSERVATORIES

  • Yoo, Sung-Moon;Jung, Taehyun;Lee, Sung-Mo;Yoon, Ha Su;Park, Han-Earl;Chung, Jong-Kyun;Roh, Kyoung-Min;Wi, Seog Oh;Cho, Jungho;Byun, Do-Young
    • 천문학회지
    • /
    • 제51권5호
    • /
    • pp.143-153
    • /
    • 2018
  • We present the first results of the invariant point (IVP) coordinates of the KVN Ulsan and Tamna radio telescopes. To determine the IVP coordinates in the geocentric frame (ITRF2014), a coordinate transformation method from the local frame, in which it is possible to survey using the optical instrument, to the geocentric frame was adopted. The least-square circles are fitted in three dimensions using the Gauss-Newton method to determine the azimuth and elevation axes in the local frame. The IVP in the local frame is defined as the mean value of the intersection points of the azimuth axis and the orthogonal vector between the azimuth and elevation axes. The geocentric coordinates of the IVP are determined by obtaining the seven transformation parameters between the local frame and the east-north-up (ENU) geodetic frame. The axis-offset between the azimuth and elevation axes is also estimated. To validate the results, the variation of coordinates of the GNSS station installed at KVN Ulsan was compared to the movement of the IVP coordinates over 9 months, showing good agreement in both magnitude and direction. This result will provide an important basis for geodetic and astrometric applications.

DEVELOPMENT OF 230 GHZ RADIO RECEIVER SYSTEM FOR SRAO

  • Lee, Jung-Won;Kim, Chang-Hee;Kang, Hyunwoo;Lee, Bangwon;Han, Junghwan;Lee, Seok-Ho;Jeong, Il-Gyo;Koo, Bon-Chul;Park, Yong-Sun
    • 천문학회지
    • /
    • 제46권6호
    • /
    • pp.225-234
    • /
    • 2013
  • We develop a radio receiver system operating at ${\lambda}{\sim}1.3$ mm for the 6 m telescope of Seoul Radio Astronomy Observatory. It consists of a dual polarization receiver, a couple of IF processing units, two FFT spectrometers, and associated software. By adopting sideband-separating superconductor mixers with image band terminated to waveguide load at 4.2 K, we achieve $T_{RX}{\leq}100$ K and $T_{sys}$ less than 150 K at best weather condition over 210-250 GHz frequency range. The intermediate frequency signal of 3.5-4.5 GHz is down converted to 0-1 GHz and fed into the FFT spectrometers. The spectrometer covers 1 GHz bandwidth with a spectral resolution of 61 KHz. Test observations are conducted toward several radio sources to evaluate the performance of the system. Aperture and beam efficiencies measured by observing planets are found to be typically 44 ~ 59% and 47 ~ 61%, respectively over the RF band, which are consistent with those measured at 3 mm band previously.

Using the Crab Nebula as Polarization Angle Calibrator for the Korean VLBI Network

  • Minchul Kam;Sascha Trippe;Do-Young Byun;Jongho Park;Sincheol Kang;Naeun Shin;Sang-Sung Lee;Taehyun Jung
    • 천문학회지
    • /
    • 제56권1호
    • /
    • pp.1-9
    • /
    • 2023
  • The Crab nebula is widely used as a polarization angle calibrator for single-dish radio observations because of its brightness, high degree of linear polarization, and well-known polarization angle over a wide frequency range. However, the Crab nebula cannot be directly used as a polarization angle calibrator for single-dish observations with the Korean VLBI Network (KVN), because the beam size of the telescopes is smaller than the size of the nebula. To determine the polarization angle of the Crab nebula as seen by KVN, we use 3C 286, a compact polarized extragalactic radio source whose polarization angle is well-known, as a reference target. We observed both the Crab nebula and 3C 286 with the KVN from 2017 to 2021 and find that the polarization angles at the total intensity peak of the Crab nebula (equatorial coordinates (J2000) R.A. = 05h34m32.3804s and Dec = 22°00'44.0982'') are 154.2° ± 0.3°, 151.0° ± 0.2°, 150.0° ± 1.0°, and 151.3° ± 1.1° at 22, 43, 86, and 94 GHz, respectively. We also find that the polarization angles at the pulsar position (RA = 05h34m31.971s and Dec = 22°00'52.06'') are 154.4° ±0.4°, 150.7° ±0.4°, and 149.0° ± 1.0° for the KVN at 22, 43, and 86 GHz. At 129 GHz, we suggest to use the values 149.0° ± 1.6° at the total intensity peak and 150.2° ± 2.0° at the pulsar position obtained with the Institute for Radio Astronomy in the Millimeter Range (IRAM) 30-meter Telescope. Based on our study, both positions within the Crab nebula can be used as polarization angle calibrators for the KVN single-dish observations.

공진 포스트 구조를 갖는 Q-band 도파관형 건 발진기의 임베딩 임피던스 해석 (AN ANALYSIS OF EMBEDDING IMPEDANCE FOR Q-BAND WAVEGUIDE GUNN OSCILLATOR WITH RESONANCE POST)

  • 김현주;한석태;김태성;김광동;이창훈;정문희;김용기
    • Journal of Astronomy and Space Sciences
    • /
    • 제18권2호
    • /
    • pp.119-128
    • /
    • 2001
  • 도파관형 건 발진기의 발진주파수 범위와 주파수 안정도는 공진기 치수에 따른 임피던스에 민감하다. 그러므로 HFSS (High Frequency Structure Simulator)을 이용하여 공진기의 치수에 따른 임베딩 임피던스 (embedding impedance)를 계산하였다. 본 논문에서는 주파수 함수를 갖는 Q-band (33 ∼ 50 GHz) 건 발진기의 임베딩 임피던스의 이론적인 결과와 실제 제작한 발진기의 실험측정 결과를 비교하여 이론적 해석의 타당성을 검증하였다. 그리고 본 논문에서 제시한 방법에 의한 이론적 해석만으로 발진주파수 범위를 예상할 수 있음을 확인하였다

  • PDF

PERFORMANCE OF THE TRAO 13.7-M TELESCOPE WITH NEW SYSTEMS

  • Jeong, Il-Gyo;Kang, Hyunwoo;Jung, Jaehoon;Lee, Changhoon;Byun, Do-Young;Je, Do-Heung;Kang, Sung-Ju;Lee, Youngung;Lee, Chang Won
    • 천문학회지
    • /
    • 제52권6호
    • /
    • pp.227-233
    • /
    • 2019
  • We report the performance of the 13.7-meter Taeduk Radio Astronomy Observatory (TRAO) radio telescope. The telescope has been equipped with a new receiver, SEQUOIA-TRAO, a new backend system, FFT2G, and a new VxWorks operating system. The receiver system features a 16-pixel focal plane array using high-performance MMIC preamplifiers; it shows very low system noise levels, with system noise temperatures from 150 K to 450 K at frequencies from 86 to 115 GHz. With the new backend system, we can simultaneously obtain 32 spectra, each with a velocity coverage of 163 km s-1 and a resolution of 0.04 km s-1 at 115 GHz. The new operating system, VxWorks, has successfully handled the LMTMC-TRAO observing software. The main observing method is the on-the-fly (OTF) mapping mode; a position-switching mode is available for small-area observations. Remote observing is provided. The antenna surface has been newly adjusted using digital photogrammetry, achieving a rms surface accuracy better than 130 ㎛. The pointing uncertainty is found to be less than 5" over the entire sky. We tested the new receiver system with multi-frequency observations in OTF mode. The aperture efficiencies are 43±1%, 42±1%, 37±1%, and 33±1%, the beam efficiencies are 45±2%, 48±2%, 46±2%, and 41±2% at 86, 98, 110, and 115 GHz, respectively.