• Title/Summary/Keyword: Radio activity

Search Result 220, Processing Time 0.022 seconds

Research on Ionospheric Variations Associated with Solar Activity Covering One Complete Solar Cycle (1991-2002) in Korea

  • Lee, Sang-U;Kim, Jeong-Hun;Kim, Yu-Seon
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.36-36
    • /
    • 2004
  • Ionospheric data from DGS-256 ionosonde operated by Radio Research Laboratory in Anyang archived during 1991-2002 was extracted and analyzed firstly in Korea. Daily, monthly and annual variations of the 12-year F2 layer critical frequency(foF2) are derived to investigate the statistical ionospheric characteristics during one complete solar cycle. Positive correlation between the mean values of 24-hourly monthly median foF2 and the monthly smoothed sunspot number(SSN) for the same period is found. (omitted)

  • PDF

Improving Performance of Remote TCP in Cognitive Radio Networks

  • Yang, Hyun;Cho, Sungrae;Park, Chang Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2323-2340
    • /
    • 2012
  • Recent advances in cognitive radio technology have drawn immense attention to higher layer protocols above medium access control, such as transmission control protocol (TCP). Most proposals to improve the TCP performance in cognitive radio (CR) networks have assumed that either all nodes are in CR networks or the TCP sender side is in CR links. In those proposals, lower layer information such as the CR link status could be easily exploited to adjust the congestion window and improve throughput. In this paper, we consider a TCP network in which the TCP sender is located remotely over the Internet while the TCP receiver is connected by a CR link. This topology is more realistic than the earlier proposals, but the lower layer information cannot be exploited. Under this assumption, we propose an enhanced TCP protocol for CR networks called TCP for cognitive radio (TCP-CR) to improve the existing TCP by (1) detection of primary user (PU) interference by a remote sender without support from lower layers, (2) delayed congestion control (DCC) based on PU detection when the retransmission timeout (RTO) expires, and (3) exploitation of two separate scales of the congestion window adapted for PU activity. Performance evaluation demonstrated that the proposed TCP-CR achieves up to 255% improvement of the end-to-end throughput. Furthermore, we verified that the proposed TCP does not deteriorate the fairness of existing TCP flows and does not cause congestions.

APPARENT INWARD MOTION OF THE PARSEC-SCALE JET IN THE BL LAC OBJECT OJ287 DURING THE 2011-2012 γ-ray FLARES

  • SAWADA-SATOH, S.;AKIYAMA, K.;NIINUMA, K.;NAGAI, H.;KINO, M.;D'AMMANDO, F.;KOYAMA, S.;HADA, K.;ORIENTI, M.;HONMA, M.;SHIBATA, K.M.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.429-432
    • /
    • 2015
  • We present a kinematic study of the parsec-scale radio jet in OJ 287, one of the most studied BL Lac objects, during ${\gamma}$-ray flares, to explore the relation between parsec-scale radio jet activity and ${\gamma}$-ray emission. The 22-GHz light curve of OJ 287 show three obvious flare events around 2011 May, 2011 October, and 2012 March. The second radio flare occurred during the ${\gamma}$-ray flaring period, and the third radio flare seemed to precede the ${\gamma}$-ray flare by one month. One jet component moved outward with respect to the core component with an apparent superluminal speed (~ 11c) from 2010 November to 2011 November. Then it changed direction, moving apparently inward in 2011 November, when the ${\gamma}$-ray flare occurred. The observed apparent inward motion of the jet at 22 GHz could be caused by a new jet component, unresolved at 22 GHz, in the innermost region.

IONOSPHERIC EFFECTS ON THE RADIO COMMUNICATION (전파통신에서의 전리층 역할)

  • PYO YOO SURN;CHO KYOUNGSEOK;LEE DONG-HUN;KIM EUNHWA
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc2
    • /
    • pp.21-25
    • /
    • 2000
  • The ionosphere, the atmosphere of the earth ionized by solar radiations, has been strongly varied with solar activity. The ionosphere varies with the solar cycle, the seasons, the latitudes and during any given day. Radio wave propagation through or in the ionosphere is affected by ionospheric condition so that one needs to consider its effects on operating communication systems normally. For examples, sporadic E may form at any time. It occurs at altitudes between 90 to 140 km (in the E region), and may be spread over a large area or be confined to a small region. Sometimes the sporadic E layer works as a mirror so that the communication signal does not reach the receiver. And radiation from the Sun during large solar flares causes increased ionization in the D region which results in greater absorption of HF radio waves. This phenomenon is called short wave fade-outs. If the flare is large enough, the whole of the HF spectrum can be rendered unusable for a period of time. Due to events on the Sun, sometimes the Earth's magnetic field becomes disturbed. The geomagnetic field and the ionosphere are linked in complex ways and a disturbance in the geomagnetic field can often cause a disturbance in the F region of the ionosphere. An enhancement will not usually concern the HF communicator, but the depression may cause frequencies normally used for communication to be too high with the result that the wave penetrates the ionosphere. Ionospheric storms can occur throughout the solar cycle and are related to coronal mass ejections (CMEs) and coronal holes on the Sun. Except the above mentioned phenomena, there are a lot of things to affect the radio communication. Nowadays, radio technique for probing the terrestrial ionosphere has a tendency to use satellite system such as GPS. To get more accurate information about the variation of the ionospheric electron density, a TEC measurement system is necessary so RRL will operate the system in the near future.

  • PDF

RawPEACH: Multiband CSMA/CA-Based Cognitive Radio Networks

  • Chong, Jo-Woon;Sung, Young-Chul;Sung, Dan-Keun
    • Journal of Communications and Networks
    • /
    • v.11 no.2
    • /
    • pp.175-186
    • /
    • 2009
  • A new medium access control (MAC) scheme embedding physical channels into multiband carrier sense multiple access/collision avoidance (CSMA/CA) networks is proposed to provide strict quality of service (QoS) guarantee to high priority users. In the proposed scheme, two priority classes of users, primary and secondary users, are supported. For primary users physical channels are provided to ensure strict QoS, whereas secondary users are provided with best-effort service using CSMA/CA modified for multiband operation. The performance of the proposed MAC scheme is investigated using a new multiband CSMA/CA Markov chain model capturing the primary user activity and the operation of secondary users in multiple bands. The throughput of secondary users is obtained as a function of the primary user activity and other CSMA/CA parameters. It is shown that the new MAC scheme yields larger throughput than the conventional single-band CSMA/CA when both schemes use the same bandwidth.

A study for the changer of resistance and influence of the dioctylphthalate by irradiation on the polyvinyl chloride (폴리염화비닐에 방사선 조사시의 저항의 변화와 가소제의 영향)

  • 신종원;백용현
    • 전기의세계
    • /
    • v.30 no.10
    • /
    • pp.639-644
    • /
    • 1981
  • PVC is a kind of electric insulation polymer. But we get some deteriorations in electrical characteristics of the PVC, when it is used on the radioactive field. In order to find out the cause of the deterioration, we investigate the surface-resistance, volume-resistance, dielectric constant and dielectric loss angle of the soft and hard PVC which is irradiated by the Co$^{60}$ .gamma. radioactivity. From the experiment, we can conclude the followings 1. Radio-activity proof characteristic in the soft PVC is stronger than in the hard PVC. 2. The resistance of PVC which is irradiated by the radio-activity decrease exponentially. 3. The dielectric constant and the dielectric loss angle of PVC irradiated by Co$^{60}$ .gamma.ray reach maximum value in first few time.

  • PDF

Solar Activity as a Driver of Space Weather: I. Introduction

  • Yong-Jae Mun;Gyeong-Seok Jo;Rok-Sun Kim;Yeong-Deuk Park
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.37-37
    • /
    • 2004
  • It is well known that solar activity such as coronal mass ejections(CMEs) and flares is a direct driver of space weather. In this talk, we introduce its main physical characteristics and physical connections among CMEs(or flares) -Interplanetary(IP) shocks - interplanetary CMEs (or magnetic clouds) - geomagnetic storms. Specifically, solar activity is discussed in terms of space weather scales (R:Radio Blackout, S: Solar Radiation Storms, G: Geomagnetic Storms). (omitted)

  • PDF

Comparative Evaluation for the Effect of SUV's Due to a Residual Radio-activity Location Inside Vascular Insert Devices During PET/CT Scans (PET/CT 검사 시 혈관삽입기구 내 잔여 방사능 위치에 따른 표준섭취계수의 영향 비교 평가)

  • Sim, Woo Yong;Kim, Jung Yul;Cho, Suk Won;Oh, Shin Hyun;Lim, Han Sang;Park, Hoon-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.94-97
    • /
    • 2014
  • Purpose: Standardized uptake value (SUV) is a simple semi-quantitative method that can measure the ratio of the tissue radioactivity between the tumor and normal. SUV is commonly used in PET/CT, however, SUV is affected by various factor. The purpose of this study was to evaluate the impact of the residual activity on SUV depending on the location of catheter insertion device post injection. Materials and Methods: NEMA IEC Body Phantom was imaged using a Discovery 600 PET scanner. In 22 mm diameter sphere, the different activity of $^{18}F-FDG$ (7.4, 14.8, 22.2, 29.6, 37, 55.5 MBq) was filled and background was filled with $^{18}F-FDG$ (5.7 kBq/mL). We scaned the phantom on the assumption that the radioactivity in sphere was residual activity in insertion device. Simulation of PET was divided into three groups based on the location of sphere in Scan FOV (SFOV); inclusion, 1/2 inclusion and exclusion group. Results: Among three groups, the group of excluded sphere showed the highest SUV regardless of the amount of $^{18}F-FDG$ activity. In case of 7.4 MBq, average SUV of inclusion group, 1/2 inclusion and exclusion group was 0.780, 0.840 and 0.896 respectively. However, average SUV of 55.5 MBq showed 0.372, 0.460 and 0.508 with same order. Depend on residual radioactivity in the sphere and position of sphere, the SUV was different minimum of 10.4%, maximum of 62.8%. Conclusion: This study showed that SUV is underestimated as the residual radio-activity is increased. In addition, SUV was a changed according to the position of residual radio-activity. And among the position, exclusion group showed the difference of SUV was lowest. If we measure the residual radio-activity of inserting devices and radio-activity from extra-vasation in the patients, it seems to be more useful in clinical field.

  • PDF

THE MILLIMETER-RADIO EMISSION OF BL LACERTAE DURING TWO γ-RAY OUTBURSTS

  • Kim, Dae-Won;Trippe, Sascha;Lee, Sang-Sung;Park, Jong-Ho;Kim, Jae-Young;Algaba, Juan-Carlos;Hodgson, Jeffrey A.;Kino, Motoki;Zhao, Guang-Yao;Wajima, Kiyoaki;Kang, Sincheol;Oh, Junghwan;Lee, Taeseok;Byun, Do-Young;Kim, Soon-Wook;Kim, Jeong-Sook
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.6
    • /
    • pp.167-178
    • /
    • 2017
  • We present a study of the inexplicit connection between radio jet activity and ${\gamma}$-ray emission of BL Lacertae (BL Lac; 2200+420). We analyze the long-term millimeter activity of BL Lac via interferometric observations with the Korean VLBI Network (KVN) obtained at 22, 43, 86, and 129 GHz simultaneously over three years (from January 2013 to March 2016); during this time, two ${\gamma}$-ray outbursts (in November 2013 and March 2015) can be seen in ${\gamma}$-ray light curves obtained from Fermi observations. The KVN radio core is optically thick at least up to 86 GHz; there is indication that it might be optically thin at higher frequencies. To first order, the radio light curves decay exponentially over the time span covered by our observations, with decay timescales of $411{\pm}85$ days, $352{\pm}79$ days, $310{\pm}57$ days, and $283{\pm}55$ days at 22, 43, 86, and 129 GHz, respectively. Assuming synchrotron cooling, a cooling time of around one year is consistent with magnetic field strengths $B{\sim}2{\mu}T$ and electron Lorentz factors ${\gamma}$ ~ 10 000. Taking into account that our formal measurement errors include intrinsic variability and thus over-estimate the statistical uncertainties, we find that the decay timescale ${\tau}$ scales with frequency ${\nu}$ like ${\tau}{\propto}{\nu}^{-0.2}$. This relation is much shallower than the one expected from opacity effects (core shift), but in agreement with the (sub-)mm radio core being a standing recollimation shock. We do not find convincing radio flux counterparts to the ${\gamma}$-ray outbursts. The spectral evolution is consistent with the 'generalized shock model' of Valtaoja et al. (1992). A temporary increase in the core opacity and the emergence of a knot around the time of the second ${\gamma}$-ray event indicate that this ${\gamma}$-ray outburst might be an 'orphan' flare powered by the 'ring of fire' mechanism.

NCURO DATA RETRIEVAL ALGORITHM IN FORMOSAT-3 GPS RADIO OCCULTATION OBSERVATION OF GRAVITY WAVE ACTIVITY

  • Yeh, Wen-Hao;Chiu, Tsen-Chieh;Liou, Yuei-An;Yan, Shian-Kun;Huang, Cheng-Yung
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.192-195
    • /
    • 2008
  • Radio occultation (RO) has been used in the planetary science since Microlab-1 was launched in 1995. With the RO technique, the profiles of atmosphere and the global atmospheric data can be obtained. In 2006, Taiwan launched six low Earth orbit (LEO) satellites as the RO constellation mission, known as FORMOSAT-3. In order to retrieve the RO data from original data, a retrieval algorithm, NCURO, is developed. The input of NCURO algorithm is mainly the excess phase of GPS signal, and the output is the dry pressure and dry temperature. Using temperature profiles retrieved by NCURO algorithm, temperature perturbation and potential energy of gravity wave have been evaluated. In this paper, the retrieval algorithm and the global distribution of energy of gravity waves are described and demonstrated.

  • PDF