• Title/Summary/Keyword: Radio Refractivity

Search Result 10, Processing Time 0.022 seconds

Development of Exponential Model of Korea for Improved Altitude Estimation Performance of High-Altitude Target at Radar System (레이더에서 고고도 표적물의 고도 예측 성능 향상을 위한 한국형 지수 모델 개발에 관한 연구)

  • Moon, Hyun-Wook;Jeon, Min-Hyun;Kim, Woo-Joong;Oh, Seong-Keun;Lee, Jong-Hyun;Kwon, Se-Woong;Yoon, Young-Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.7
    • /
    • pp.831-839
    • /
    • 2012
  • In this paper, an exponential model of Korea is proposed to minimize an altitude-error of high-altitude target due to atmosphere refraction at radar system. The relation between surface refractivity and refractivity gradient, which is extracted using the least square fit from the measured data at 7 weather stations, is applied to the exponential model. And in order to verify the proposed model, the altitude-errors for a standard atmosphere, a CRPL(Central Radio Propagation Lab.) exponential model, the proposed model are extracted and analyzed using a ray tracing. As a result, the proposed model can improve the altitude estimation performance of radar compared to conventional atmosphere refractive index models.

A Study on the Retrieval Algorithms for Atmospheric Parameters from FORMOSAT-3/COSMIC Occultation Data

  • Yeh, Wen-Hao;Chiu, Tsen-Chieh;Huang, Cheng-Yung;Liou, Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.312-315
    • /
    • 2006
  • Radio occultation technique has been used in planetary science to obtain reliable and accurate temperature profiles of the other planets' atmosphere for decades. It relies on the fact that radio waves are bent and delayed due to the gradient of atmospheric refractivity along-ray-path. With the advent of Global Positioning System (GPS), it becomes possible to retrieve the refractivity and temperature profiles of the Earth's atmosphere from the occultation data. We have developed a retrieval algorithm and compared the results of our algorithm with the data of CHAMP to verify the accuracy of our algorithm is good enough. In our algorithm, there are some smoothing steps when retrieving. We analysis the data of FORMOSAT-3 and compare the results with and without smoothing and the results of TACC to see is there any phenomenon deleted after smoothing.

  • PDF

Analysis on Vehicle Tracking Error due to Radio Refraction (전파굴절에 의한 비행체 추적오차 분석)

  • Oh, Chang-Yul;Lee, Hyo-Keun;Oh, Seung-Hyeub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11A
    • /
    • pp.1078-1084
    • /
    • 2010
  • The tracking performance of a big parabola tracking antenna system for tracking and receiving of the signal from the vehicle is impacted by many factors of the internal and the external of the system. In this paper, we analyze the tracking error due to the radio refraction in the application of the tracking and positioning of the vehicle by using radio frequency. The real measurement data are used for the analysis which had been acquired by using GPS and the tracking systems of C- and S-band frequencies in NARO Space centre. To verify the correlation between the tracking errors measured and the radio refraction, we review the error factors and the accuracies of the tracking systems, and the characteristics of the refractivity. The analysis shows that there are angular errors which are due to the radio refraction and not to be neglected, compared to the accuracies of the tracking systems, in case of low elevation angle less than 10 degrees. Also, the tracking errors depend on the target altitude as well as the elevation angle for the case of the target in the troposphere. It is recommended to correct the tracking angle considering the target altitude and elevation angle for the precise target positioning.

Ionospheric Correction for retrieving atmospheric variables from GPS occultation data

  • Huang Cheng-Yung;Liou Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.43-46
    • /
    • 2005
  • [1] There are systematical errors associated with ionospheric influence in retrieving key atmospheric parameters from radio occultation (RO) soundings. In order to obtain better-quality retrievals, we develop a new method, hereafter called National Central University Radio Occultation (NCURO) scheme, to reduce the ionospheric influence. The excess phase is divided into two parts, namely geometric excess length and path excess length (excess length along ray path due to refractivity effect). An excess phase equation is presented and implemented in the NCURO scheme Whose performance is evaluated through comparisons with model simulation and experimental data. The model simulation is based on the use of the ionospheric model 002001 and atmospheric model NRLMSISE-OO. Results show that the NCURO scheme significantly reduces the ionospheric influence at altitudes above 70 km as does the scheme presented in the literature, and provides better corrections for the atmospheric profile. INDEX TERMS: 2400 Ionosphere: Ionosphere; 6964 Radio Science: Radio wave propagation; 6969 Radio Science: Remote sensing.

  • PDF

Atmospheric Profiles from KOMPSAT-5 Radio Occultation : A Simulation Study

  • Lee, Woo-Kyoung;Cho, Sung-Ki;Jo, Jung-Hyun;Park, Jong-Uk;Yoon, Jae-Cheol;Lee, Jin-Ho;Chun, Yong-Sik
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.53-56
    • /
    • 2006
  • KOMPSAT (KOrea Multi-Purpose SATellite)-5 for the earth observation and scientific research is scheduled to launch in 2009. The second payload, AOPOD (Atmosphere Occultation and Precision Orbit Determination) system, consists of a space-borne dual frequency GPS receiver and a laser retro reflector. GPS radio occultations from AOPOD system can be used to generate profiles of refractivity, temperature, pressure and water vapor in the neutral atmosphere with a high vertical resolution. Also the radio occultation in the ionosphere provides an inexpensive tool of vertical electron density profile. Currently, many LEO missions with GPS radio occultation receivers are on orbit and more GPS occultation missions are planed to launch in the near future. In this paper, we simulated radio occultation measurements from KOMPSAT-5 and retrieved atmospheric profiles using the simulated data.

  • PDF

Gravity wave activities in the polar region using FORMOSAT-3 GPS RO observations

  • Liou, Yuei-An;Yan, Shiang-Kun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.65-68
    • /
    • 2007
  • FORMOSAT-3 was launched in April of 2006. It consists of six low earth orbit (LEO) satellites that will be eventually deployed to an orbit at 800 km height. Its scientific goal is to utilize the radio occultation (RO) signals to measure the bending angles when the GPS signals transect the atmosphere. The bending angle is then used to infer atmospheric parameters, including refractivity, temperature, pressure, and relative humidity fields of global distributions through inversion schemes and auxiliary information. The expected number of RO events is around 2500 per day, of which 200 events or so fall into the polar region. Consequently, the FORMOSAT-3 observations are expected to play a key role to improve our knowledge in the weather forecasting and space physics research in the polar region. In this paper, we use temperature profiles retrieved from FORMOSAT-3 RO observations to study the climatology of gravity wave activity in the polar region. FORMOSAT-3 can provide about 200 RO observations a day in the polar region, much more than previous GPS RO missions, and, hence, more detailed climatology of gravity wave activity can be obtained.

  • PDF

Open Loop Technique in FORMOSAT-3/COSMIC mission

  • Yeh, Wen-Hao;Chiu, Tsen-Chieh;Liou, Yuei-An;Huang, Cheng-Yung
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.394-396
    • /
    • 2007
  • Radio occultation (RO) technique has been used in planetary science since 1960s. When signal goes through atmosphere, it is refracted due to the gradient of atmospheric refractivity. In 1995, the first low earth orbit (LEO) satellite, MicroLab-1, was launched to conduct RO mission. It receives the signal from global positioning system (GPS) satellites. After MicroLab-1, other RO missions, such as CHAMP, SAC-C, and GRACE, are executed in several years later. In 2006, Taiwan launched six LEO satellites for RO mission. The mission name is Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC). Under some abnormal situations, multipath and strong fluctuation in phase and amplitude of the signal appear in moist troposphere. Therefore, open loop (OL) technique has been applied to replace traditional phase lock loop (PLL) technique. In this paper, we will summarize the retrieval processing procedure and discuss the advantages and disadvantages of OL technique.

  • PDF

A Study on the Effect of Atmosphere on the Space Surveillance Radar (우주감시레이다에 대한 지구 대기권 영향 분석 연구)

  • Moon, Hyun-Wook;Choi, Eun-Jung;Lee, Jonghyun;Yeum, Jaemeung;Kwon, Sewoong;Hong, Sungmin;Cho, Sungki;Park, Jang-Hyun;Jo, Jung Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.8
    • /
    • pp.648-659
    • /
    • 2018
  • In this study, both the altitude error due to the refraction and the range error due to the delay in the ionosphere with respect to the frequency are extracted according to the radar elevation to analyze the effect of atmosphere on the space surveillance radar. To achieve this, the radio refractivity profile is modeled using the measured data from domestic weather stations. Then, the altitude-error due to the refraction is extracted using the ray tracing method, and the range error in the ionosphere is extracted according to the frequency. Further, considerations for radar design with respect to the radar error characteristics are discussed based on the abroad space surveillance radar and proposed domestic space surveillance radar. This analysis of the error characteristics is expected to be utilized for the determination of radar location, range of steering, and frequency in the space surveillance radar design.

Impact of GPS-RO Data Assimilation in 3DVAR System on the Typhoon Event (태풍 수치모의에서 GPS-RO 인공위성을 사용한 관측 자료동화 효과)

  • Park, Soon-Young;Yoo, Jung-Woo;Kang, Nam-Young;Lee, Soon-Hwan
    • Journal of Environmental Science International
    • /
    • v.26 no.5
    • /
    • pp.573-584
    • /
    • 2017
  • In order to simulate a typhoon precisely, the satellite observation data has been assimilated using WRF (Weather Research and Forecasting model) three-Dimensional Variational (3DVAR) data assimilation system. The observation data used in 3DVAR was GPS Radio Occultation (GPS-RO) data which is loaded on Low-Earth Orbit (LEO) satellite. The refractivity of Earth is deduced by temperature, pressure, and water vapor. GPS-RO data can be obtained with this refractivity when the satellite passes the limb position with respect to its original orbit. In this paper, two typhoon cases were simulated to examine the characteristics of data assimilation. One had been occurred in the Western Pacific from 16 to 25 October, 2015, and the other had affected Korean Peninsula from 22 to 29 August, 2012. In the simulation results, the typhoon track between background (BGR) and assimilation (3DV) run were significantly different when the track appeared to be rapidly change. The surface wind speed showed large difference for the long forecasting time because the GPS-RO data contained much information in the upper level, and it took a time to impact on the surface wind. Along with the modified typhoon track, the differences in the horizontal distribution of accumulated rain rate was remarkable with the range of -600~500 mm. During 7 days, we estimated the characteristics between daily assimilated simulation (3DV) and initial time assimilation (3DV_7). Because 3DV_7 demonstrated the accurate track of typhoon and its meteorological variables, the differences in two experiments have found to be insignificant. Using observed rain rate data at 79 surface observatories, the statistical analysis has been carried on for the evaluation of quantitative improvement. Although all experiments showed underestimated rain amount because of low model resolution (27 km), the reduced Mean Bias and Root-Mean-Square Error were found to be 2.92 mm and 4.53 mm, respectively.

Analysis of Atmospheric Conditions Using Long-Range Surveillance Radar (장거리 탐지 레이다를 이용한 대기상태 분석)

  • Kang, Maneg Chang;Kwon, Sewoong;Lee, Jong-hyun;Lee, Kiwon;Sun, Woong;Byun, Gangil;Choo, Hosung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.2
    • /
    • pp.120-128
    • /
    • 2017
  • The refraction phenomenon of radio waves should be considered to improve the detection accuracy of target altitudes for long-range surveillance radars, however, it is difficult to estimate accurate refractivity of atmosphere for every location. In this paper, we propose the atmosphere evaluation metric(AEM) to estimate atmospheric conditions at target locations using target altitudes obtained from primary surveillance radar(PSR) and secondary surveillance radar(SSR). To verify the suitability of the proposed metric, we observed atmospheric conditions and calculated estimation errors of target altitudes using measured data.