• Title/Summary/Keyword: Radio Network

Search Result 1,727, Processing Time 0.025 seconds

A Study on Header Compression Algorithm for the Effective Multimedia Transmission over Wireless Network (무선망에서 효율적인 멀티미디어 전송을 위한 헤더압축 알고리즘 연구)

  • Yun, Sung-Yeol;Park, Seok-Cheon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.2
    • /
    • pp.296-304
    • /
    • 2010
  • MoIP is technology to transmit a variety of multimedia over IP, but compared to traditional voice services require greater bandwidth and radio resources in a wireless environment has already reached the limits. Therefore, as a way to resolve this issue for header compression is a lot of research. SCTP protocol header compression using ROHC-SCTP has been research, ROHC-SCTP packet structure of the ROHC algorithm with different types and, SCTP header compression to apply the characteristics of the poor performance of many of these have drawbacks. Therefore, in this paper to solve these problems better header compression algorithm was designed. In this paper, the proposed algorithm to evaluate the NS-2 simulation environment was modeled on the header compression operation. Evaluation results, the algorithm designed in this paper compared to ROHC-SCTP algorithms determine the overhead rate was low, the data types vary a lot better when the total header size was small.

Channel State-Aware Joint Dynamic Cell Coordination Scheme using Adaptive Modulation and Variable Reuse Factor in OFDMA (OFDMA 하향링크에서 적응적 변조와 여러 개의 재사용 지수를 동시에 사용하고 채널 상태를 고려한 동적 셀 코디네이션)

  • Byun, Dae-Wook;Ki, Young-Min;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1A
    • /
    • pp.24-33
    • /
    • 2007
  • In this paper, two different dynamic cell coordination strategies for frequency flat and selective fading are proposed for efficient subcarrier allocation in the joint consideration of adaptive modulation and variable frequency reuse in the channel-aware OFDMA downlink multicellular environment. Compared to a conventional OFDMA system without cell coordination, where system throughput may become degraded due to the persistent interference from other cells, the proposed system dynamically allows RNC to apply different reuse factors on each subchannel and scheduling in consideration of channel and interference conditions of individual users so as to increase the system throughput and guarantee QoS of each user. In a frequency flat fading, the dynamic scheme with the proposed scheduling achieves on average three times larger throughput than the conventional dynamic scheme [8]. In a selective fading channel, the proposed schemes showed 2.6 times as large throughput as that of a single reuse factor of one for all subchannels.

Performance Analysis of a Noncoherent OOK UWB System Based on Power Detection in Indoor Wireless Channels (실내 무선 채널에서 전력검출 기반 Noncoherent OOK UWB 시스템의 성능 분석)

  • Oh Jongok;Yang Suckchel;Shin Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11C
    • /
    • pp.1498-1509
    • /
    • 2004
  • In this paper, we evaluate the performance of a noncoherent OOK (On-Off Keying) UWB (Ultra Wide Band) system based on power detection with noise power calibration and noise power windowing for ubiquitous sensor network applications in typical indoor wireless channels. Utilizing noise power calibration and noise power windowing, the current noise information can be initially or adaptively provided to determine suitable detection threshold value for signal demodulation. Simulation results show that the noncoherent OOK UWB system using noise power calibration achieves good BER (Bit Error Rate) performance which is favorably comparable to that of the system using the ideal adaptive threshold, while maintaining simple receiver structure. However, despite the serious loss of the data transmission rate, the performance improvement by noise power windowing is not so remarkable. furthermore, these performance results are similarly maintained in BEE 802.15 Task Group 3a UWB indoor channel model, and it is also revealed that the BER performance can be significantly improved by increasing the pulse repetition rate.

Architecture of RFID Application Services for Ubiquitous Computing (유비쿼터스 컴퓨팅을 위한 RFID 응용 서비스 아키텍처에 관한 연구)

  • Lee Sang-Jo;Cho Tae-Beom;Yunn Hwa-Mook;Kim Chang-Su;Jung Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.1011-1014
    • /
    • 2006
  • Recently, The Ubiquitous Computing which appears by issue in the latest IT field is actualized possibility and interest intensively becomes in many disciplines through rapid advancement of the network and the semiconductor. RFID is a base technology of the Ubiquitous Computing and it is technology to identifies information of the electronic tag which attaches in the object. and it guides the commercial business anger of Ubiquitous Computing. But currently, most of RFID research is becoming intensively in hardware field as tag and leader, whereas the research of software field relativy is insufficient. In this paper, we compared and analyzed architecture of existing which uses the RFID to rise point of Ubiquitous Computing then we complemented the problem point which is analyzed and proposed a new architecture to provides an intelligence application service.

  • PDF

The Risk of Wardriving Attack Against Wireless LAN and its Counterplan (무선랜 워드라이빙 공격의 위험성과 대응방안)

  • Choi, Young-Nam;Cho, Sung-Mok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2121-2128
    • /
    • 2009
  • The application range of IEEE 802.11 wireless LAN has rapidly expanding from campus, enterprise to the public network of Hot Spot area due to the advantages of easiness of construction, mobility of wireless client station, convenience of usage and so on. However the security of WLAN(Wireless LAN) is vulnerable inherently because of using RF as a medium, and so the dangers of infringement of personal information and inside data of enterprises have increased and wardriving attack searching for security vulnerability in wireless LAN has become more serious especially. In this paper, we find out the overview of various procedures and preparatory stages for wardriving attack against wireless LAN, and propose complementary methods to prevent information infringement accidents from wardriving attack in wireless LAN. For this purpose, we make an equipment which is suitable for wardriving in wireless LAN and show security vulnerability of AP(Access Point) operation in WLAN around Yangjae-Dong in Seoul as a result of using the equipment.

Improvement of OLSR Through MIMC's Decreased Overhead in MANET (모바일 애드 혹 네트워크 환경 하에서 멀티인터페이스 멀티채널의 오버헤드 감소를 통한 OLSR의 성능 개선)

  • Jang, Jae-young;Kim, Jung-ho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.3
    • /
    • pp.55-70
    • /
    • 2016
  • The most critical research issue in MANET environment is on supporting reliable communication between various devices. Various Multi-Hop Routing Protocol studies have proceeded. However, some problems you might have found when you use the existing link state routing technique are that it increases Control Message Overhead and it is unstable when node moves in CR circumstance which has transformation of using channel and MIMC circumstance which uses a number of interfaces. This essay offers a technique which is based on On-Demand Hello and the other technique which used Broadcast Interface of optimization as a solution to decrease Control Message Overhead. Also it proposes Quick Route Restoration technique which is utilized by GPS and MPR Selection technique which consider mobility as a solution of stable communication when node moves. Those offered Routing Protocol and OPNET based simulator result will be expected to be an excellent comparison in related research fields.

Case Study for Ship Ad-hoc Networks under a Maritime Channel Model in Coastline Areas

  • Su, Xin;Yu, HaiFeng;Chang, KyungHi;Kim, Seung-Geun;Lim, Yong-Kon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.4002-4014
    • /
    • 2015
  • ITU-R M.1842-1, as a well-known specification dedicated to maritime mobile applications, has standardized wireless transmission protocols according to the particular characteristics of a maritime communications scenario. A time division multiple access (TDMA) frame structure, along with modulation schemes to achieve a high data rate, has been described clearly in ITU-R M.1842-1. However, several specification items are still under "to be decided" status, which brings ambiguity to research works. In addition, the current version of ITU-R M.1842-1 is focused mainly on maritime transmissions in open-sea areas, where the cyclic prefix (CP) is set to zero and only 16-QAM is used in the multi-carrier (MC) system. System performance might be dramatically degraded in coastline areas due to the inter-symbol interference (ISI) caused by selective fading. This is because there is a higher probability that the signal will be reflected by obstacles in coastline areas. In this paper, we introduce the transmission resource block (TRB) dedicated to ITU-R M.1842-1 for a ship ad-hoc network (SANET), where the pilot pattern of TRB is based on the terrestrial trunked radio (TETRA). After that, we evaluated SANET performance under the maritime channel model in a coastline area. In order to avoid noise amplification and to overcome the ISI caused by selective fading, several strategies are suggested and compared in the channel estimation and equalization procedures, where the link-level simulation results finally validate our proposals.

Direction-based Geographic Routing for Wireless Sensor Networks (센서 네트워크에서 장애물 극복을 위한 방향기반의 라우팅 기법)

  • Ko, Young-Il;Park, Chang-Sup;Son, In-Keun;Kim, Myoung-Ho
    • Journal of KIISE:Information Networking
    • /
    • v.33 no.6
    • /
    • pp.438-450
    • /
    • 2006
  • Geographic routing protocols are very attractive choice for routing in wireless sensor networks because they have been shown to scale better than other alternatives. Under certain ideal conditions, geographic routing works correctly and efficiently. The most commonly used geographic routing protocols include greedy forwarding coupled with face routing. Existing face routing algorithms use planarization techniques that rely on the unit-graph assumption. In real world, many conditions violate the unit-graph assumption of network connectivity, such as location errors, communication voids and radio irregularity, cause failure in planarization and consequently face routing. In this paper, we propose the direction-based geographic routing, which enables energy efficient routing under realistic conditions without planarization techniques. Our proposed approach is for the case in which many sensors need to collect data and send it to a central node. Simulation results show that the protocol exhibits superior performances in terms of energy consumption, delivery success rate, and outperforms the compared protocols.

FPGA Prototype Design of Dynamic Frequency Scaling System for Low Power SoC (저전력 SoC을 위한 동적 주파수 제어 시스템의 FPGA 프로토타입 설계)

  • Jung, Eun-Gu;Marculescu, Diana;Lee, Jeong-Gun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.11
    • /
    • pp.801-805
    • /
    • 2009
  • Hardware based dynamic voltage and frequency scaling is a promising technique to reduce power consumption in a globally asynchronous locally synchronous system such as a homogeneous or heterogeneous multi-core system. In this paper, FPGA prototype design of hardware based dynamic frequency scaling is proposed. The proposed techniques are applied to a FIFO based multi-core system for a software defined radio and Network-on-Chip based hardware MPEG2 encoder. Compared with a references system using a single global clock, the first prototype design reduces the power consumption by 78%, but decreases the performance by 5.9%. The second prototype design shows that power consumption decreases by 29.1% while performance decreases by 0.36%.

A Call Admission Control Algorithm in 3GPP LTE System for Guarantee of Packet Delay (패킷 지연 보장을 위한 LTE 시스템의 호 수락 제어 알고리즘)

  • Bae, Sueng-Jae;Choi, Bum-Gon;Lee, Jin-Ju;Kwon, Sung-Oh;Chung, Min-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6A
    • /
    • pp.458-467
    • /
    • 2009
  • Long Tenn Evolution (LTE) is the next generation mobile phone technology which has being standardized by the Third Generation Partnership Project (3GPP). In the existing mobile communication networks, voice traffic is delivered through circuit switched networks. In LTE, however, all kinds of traffic are transferred through IP based packet switched networks which has best-effort characteristic. Therefore, providing QoS in LTE system is difficult. In order to provide QoS in LTE, RRM is very important. Especially, in part of RRM, call admission control (CAC) performs an important function to reduce network congestion and guarantee a certain level of QoS for on-going calls. In this paper, we propose a CAC algorithm in order to provide QoS for various kinds of services in LTE system. The performance of the proposed algorithm is evaluated with various simulation environments. The results show that the proposed algorithm provides QoS through rejections of requested calls. Especially, the proposed CAC algorithm can be satisfied with packet delay requirement defined in LTE specification.