• Title/Summary/Keyword: Radical distribution

Search Result 203, Processing Time 0.03 seconds

OH Radical Distribution and Sooting Characteristics in Co-Flow Diffusion Flames (동축류 확산화염의 OH 라다칼 분포 및 매연 특성)

  • Lee, Won-Nam;Song, Young-Hoon;Cha, Min-Suk
    • 한국연소학회:학술대회논문집
    • /
    • 1997.06a
    • /
    • pp.1-11
    • /
    • 1997
  • The soot and OH radical distributions have been experimentally studied in ethylene and propane laminar diffusion flames. The integrated soot volume fraction was measured along the centerline of a flame using a laser light extinction method. Planar laser light scattering and PLIF techniques are employed for the soot and OH radical distribution measurements utilizing Nd:YAG laser and OPO, FDO system. The concentration of OH radical is rapidly decreased at the edge of sooting region, which implies the importance of OH radical species on the soot oxidation process. For ethylene flames, the addition of air in fuel moves the OH radical distribution towards the center line of a flame at the soot oxidation region, while the concentration of OH radical remains relatively high at the soot formation region. The interaction between soot particles and OH radicals becomes more active with fuel-air at the soot oxidation region. For propane flames, however, any indication of the increased interaction between soot particles and OH radicals with fuel-air was not noticed.

  • PDF

An Experimental Study on Flame Structure and Combustion Characteristics of Turbulent Diffusion Flame(II) (난류확산화염의 화염구조와 연소특성에 관한 실험적 연구(2))

  • Choe, Byeong-Ryun;Jang, In-Gap;Choe, Gyeong-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.3
    • /
    • pp.1050-1060
    • /
    • 1996
  • Recently, attention has been paid to the flame diagnostic by noncontact methods which dose not deform the flame shape. One of them is a method which is using the radical luminous intensity. Generally, this diagnostic method using radical luminous has been investigated its reliability by applying to laminar flame. This study, however, investigated each radical luminous signals through stocastical analysis like auto-correlation, cross-correlation, phase and coherence which were acquired from measuring radical luminous intensity of OH, CH, $O_{2}$, radicals in turbulent diffusion flame. To compare radical luminous intensity in flame with temperature, ion current and concentration , radious distribution of each properties was investigated and considered. In radical luminous intensity, correlation in the reaction zone of flame was higher than in correlation in combusted gas zone. And radious distribution of radical luminous intensity was corresponded with radious distribution of temperature, ion current and concentration. The result of the study confirms that a radical luminous flame diagnosis is possible in the turbulent diffusion flame.

An Experimental Study on the Flame Structure of Partially Premixed Flame using OH PLIF (OH PLIF를 이용한 부분 예혼합 화염의 화염구조에 관한 실험적 연구)

  • Lee, Seung-Young;Lee, Jong-Ho;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.54-59
    • /
    • 2001
  • OH radical concentration have been measured in a methane-air partially premixed flames using PLIF. Excitation lines were selected $Q_{1}(6)$ branch, (1,0) band. The system is consisted of Nd:YAG laser, dye laser and frequency doubler to make pump beam for OH radical. On the direct photographs, flame height increases as fuel flow rate and equivalence ratio increase. And on the PLIF images, OH radical is distributed from premixed flame front to nonpremixed flame front through the flame structure with all equivalence ratio. OH overall concentrations increase with equivalence ratio. At the stoichiometric equivalence ratio, the peak of OH radical concentration exists strongly near the inner cone. As equivalence ratio is changed to richer, OH radical distribution goes thinly and the peak is increased as longitudinal direction. As the flow goes to the downstream, OH radical concentration decreases and broadens, because OH radical reacts with another species after OH formation at the initial oxidization. This phenomenon resembles radial distribution. At the l00cc fuel flowrate, the radial peak of OH radical exists from x/R=l.0 to 1.5.

  • PDF

Object Tracking with Radical Change of Color Distribution Using EM algorithm

  • Whoang In-Teck;Choi Kwang-Nam
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.388-390
    • /
    • 2006
  • This paper presents an object tracking with radical change of color. Conventional Mean Shift do not provide appropriate result when major color distribution disappear. Our tracking approach is based on Mean Shift as basic tracking method. However we propose tracking algorithm that shows good results for an object of radical variation. The key idea is iterative update previous color information of an object that shows different color by using EM algorithm. As experiment results, we show that our proposed algorithm is an effective approach in tracking for a real object include an object having radical change of color.

  • PDF

The Distribution of Cytoplasm and Nuclei within the Extra-radical Mycelia in Glomus intraradices, a Species of Arbuscular Mycorrhizal Fungi

  • Lee, Jai-Koo
    • Mycobiology
    • /
    • v.39 no.2
    • /
    • pp.79-84
    • /
    • 2011
  • Nuclear distribution within the extra-radical fungal structures and during spore production in the arbuscular mycorrhizae fungus Glomus intraradices was examined using an in vitro monoxenic culture system. A di-compartmental monoxenic culture system was modified using a nitrocellulose membrane and a coverglass slip for detailed observations. Nuclear distribution was observed using the fluorescent DNA binding probes SYBR Green I and DAPI. Both septate and non-septate mycelial regions were observed, but cytoplasmic contents were only found within non-septate mycelia. Nuclear fluorescent staining revealed that the non-septate hyphal region contained nuclei only with cytoplasm, and that nuclear distribution was limited by septa. Swollen hyphal bodies were often associated with septate and empty-looking hyphae. Cytoplasmic contents filled the swollen hyphal body from the non-septate hyphal region following removal of the septa. As a consequence, the swollen body developed into a new spore. These observations provide understanding about the distribution of AM fungal nuclei within extra-radical mycelia and during spore formation. The results suggest a mechanism by which the development of a cytoplasm-containing mycelium is controlled by the formation or removal of septa to efficiently maintain and proliferate essential contents. This mechanism may provide a survival strategy to the fungus.

Analysis of Fourier Transform Jet Emission Spectra of CN $(B^{2}{\Sigma}^+{\rightarrow}X^{2}{\Sigma}^+)$

  • Lee, Sang-Kuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.5
    • /
    • pp.349-353
    • /
    • 1994
  • The CN radical was generated in a jet with an inert buffer gas, helium from high voltage dc discharge of the precursor $CH_3CN$. The Fourier transform emission spectra of the O-O band of the $(B^2{\Sigma}^+{\to}X^2{\Sigma}^+)$ transition of CN have been obtained with a Bruker IFS-120HR spectrometer. The spectra show an anomalous distribution of rotational intensity which cannot be explained by a simple Boltzmann distribution. The analysis of the transition frequencies provides molecular constants with high accuracy for both the ground and the excited electronic states of the CN radical.

Study on optical emission spectroscopic method for measuring OH radical distribution in rocket plume (로켓 플룸 내부 OH 라디칼 공간분포 계측을 위한 발광 분광 기법에 관한 연구)

  • Han, Kiwook;Hahn, Jae W.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1135-1139
    • /
    • 2017
  • Spatial distribution of chemical species in flame is a important indicator understanding the flame structure and combustion characteristics, and optical emission spectroscopy has been widely used for the measurement because of its simple and non-intrusive methodology. In this study, we suggest the feasibility of the measurement of chemical species (OH radical) distribution in rocket plume using optical emission spectrometer which was developed for the spatially resolved measurement along the line-of-sight. In order to predict the ground state concentration of species from the measured emission intensity by optical emission spectrometer, we consider thermal and chemical excitation mechanisms in flame, and assume thermodynamic equilibrium for the thermally excited species. We also present the spatial resolution and the correction of collection characteristics of the optical emission spectrometer depending on object distance.

  • PDF

Prediction of Hydroxyl Substitution Site(s) of Phenol, Monochlorophenols and 4-Chloronitrobenzene by Atomic Charge Distribution Calculations

  • Lee, Byung-Dae;Lee, Min-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.787-790
    • /
    • 2009
  • The predictions of the radical reaction sites for phenol, 2-, 3- and 4-chlorophenols (CPs) and 4-chloronitrobenzene (CNB) were studied by atomic charge distribution calculations. The atomic charge distributions on each atom of these molecules were obtained using the CHelpG and MK (Merz-Kollman/Singh) methods with the optimized structural parameters determined by DFT calculation at the level of BLYP/6-311++G(d,p). By comparing the experimentally obtained hydroxyl addition site(s) and the calculated atomic charges on carbon atoms of phenol and CPs, we found that hydroxyl substitution by oxidation reaction mainly occurred to the carbon(s) with high atomic charges. With these results, we were easily able to predict the position(s) of the ·OH reaction site(s) of phenol, CPs and CNB through atomic charge distribution calculations.

Observation of Rotational Cooling of CN($B^2{\Sigma}^+$) Radical Generated in a Supersonic Expansion

  • Lee, Sang-Kuk;Choi, Iek-Soon;Kim, Un-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.5
    • /
    • pp.353-356
    • /
    • 1994
  • The $CN(B^2{\Sigma}^+)$ radical was produced in a jet using an electric dc discharge of the precursor $CH_3CN$ with inert carrier gases. The rotationally resolved Fourier transform emission spectra of the 0-0 band of the $(B^2{\Sigma}^+{\to}X^2{\Sigma}^+)$ transition of CN have exhibited different distribution of the intensity for the carrier gases He and Ar, respectively. From the analysis of intensity distribution in the spectra, the mechanism for rotational cooling process of CN radical in a supersonic expansion has been suggested.

The Total Phenolic Contents and DPPH Radical Scavenging Activities of Korean Potatoes according to Physical Characteristics and Cooking Methods (한국산 감자의 기관별, 품종별, 중량별, 분포별 및 조리 방법에 따른 총 페놀 함량과 DPPH 라디칼 소거능에 관한 연구)

  • Im, Hyo-Won;Suh, Bong-Soon
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.19 no.3
    • /
    • pp.375-383
    • /
    • 2009
  • This study was conducted to measure the total polyphenol contents and DPPH radical scavenging activities of different potato plants parts, varieties, and grades, and by distribution and different cooking conditions. The results were as follows. For the plant parts, total phenolic content and DPPH radical scavenging activity were highest in the flowers followed by leaves and stems, respectively. Among 5 potato varieties, 'Jasim' had the highest DPPH radical scavenging activity and the activity of its pulp was lower than that of its cortex(peel). Regardless of potato grade, the cortexes(peel) of samples had two-fold higher DPPH radical scavenging activity than pulp, and the Grade SS potato had the highest phenolic content. It was also found that the bud ends and stem ends had comparably larger amounts of phenolic compounds in horizontally cut potatoes. Finally, the descending order for DPPH radical scavenging activity, according to different cooking conditions, was as follows: gas oven range-baking, frying, microwave-heating, sauteing, boiling in 1% saline solution, steaming, and boiling in 3% saline solution.

  • PDF