• 제목/요약/키워드: Radical Combustion

검색결과 147건 처리시간 0.021초

ENGINE CONTROL USING COMBUSTION MODEL

  • Ohyama, Y.
    • International Journal of Automotive Technology
    • /
    • 제2권2호
    • /
    • pp.53-62
    • /
    • 2001
  • The combination of physical models of an advanced engine control system was proposed to obtain sophisticated combustion control in ultra-lean combustion, including homogeneous compression-ignition and activated radical combustion with a light load and in stoichiometric mixture combustion with a full load. Physical models of intake, combustion and engine thermodynamics were incorporated, in which the effects of residual gas from prior cycles on intake air mass and combustion were taken into consideration. The combined control of compression ignition at a light load and sparit ignition at full load for a high compession ratio engine was investigated using simulations. The control strategies of the variable valve timing and the intake pressure were clarified to keep auto-ignition at a light load and prevent knock at a full load.

  • PDF

부분 예혼합 화염의 예열공기 연소특성 (Preheated Air Combustion Characteristics of Partially Premixed Flame)

  • 이승영;이종호;전충환;장영준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.65-70
    • /
    • 2001
  • OH radical and NOx have been measured in a methane-air partially premixed flame using PLIF technique to define preheated air combustion characteristics. The temperature of mixture is determined by 300K, 400K, 600K and 800K below the auto-ignition temperature respectively. Flame height increases as equivalence ratio increased. As initial enthalpy is supplied, the radius of flame was increased and much amount of yellow flame in rich equivalence ratio was observed. This is due to the faster burning velocity. Also initial oxidization begins earlier as the initial temperature of mixture increased. It means that height of premixed flame front decreased. This phenomenon can be observed OH PLIF image. The qualitative analysis of OH concentration in the PLIF image shows that overall OH concentration increases with equivalence ratio and the initial temperature of mixture increased. At the preheating temperature goes up, axial gradient of OH concentration is less steep than that of lower temperature condition. This may identify that combustion reacts continuously, so preheated air combustion can evade the local heating and make high temperature indiscriminately in the overall reaction zone.

  • PDF

라디칼 점화 부실 혼합형 CNG DI 엔진의 연소특성에 관한 기초연구 (A Basic Study on Combustion Characteristics of Radical Ignition Sub-chamber Type CNG DI Engine)

  • 정성식;황성일;임춘미
    • 동력기계공학회지
    • /
    • 제22권1호
    • /
    • pp.56-63
    • /
    • 2018
  • After the recent fabrication of diesel vehicle exhaust gas by Volkswagen, nitrogen oxides ($NO_x$) and particulate matter (PM) are drawing attention as representative pollutants included in exhaust gas. When gasoline and diesel fuels are combusted through direct injection into a combustion chamber at high pressure, PM emission is actually increased. To find a solution to this problem, a basic study was conducted to derive an optimized variable for combustion of compressed natural gas (CNG) by applying CNG, acknowledged as a clean fuel, to direct injection system. The essence of this study is in the introduction of a radical ignition technology for compressed natural gas (RI-CNG) in a sub-chamber type engine. The direct injection system was applied to a sub-chamber to remove residual gas from previous combustion cycle. In addition, optimal mixer distribution was achieved by precisely setting ignition timing based on fuel injection timing and excess air ratio.

STUDY ON PRE-MIXTURE COMBUSTION IN A SUB-CHAMBER TYPE CVC WITH MULTIPLE PASSAGE HOLES

  • PARK J. S.;YEOM J. K.;LEE T. W.;HN J. Y.;CHUNG S. S.
    • International Journal of Automotive Technology
    • /
    • 제7권1호
    • /
    • pp.17-23
    • /
    • 2006
  • An experimental study was carried out to obtain the fundamental data about the effect of sub-chamber on pre-mixture combustion. A eve (constant volume combustor) divided into a sub-chamber and a main chamber was used in this experiment. The volume of the sub-chamber was varid trom $0.45\%$ to $1.4\%$ about the whole combustion chamber. The sub-chamber has twelve narrow radial passage holes and a spark plug to ignite the pre-mixture. As the ignition occurs in the sub-chamber by a spark discharge, burned and unburned gas including a great number of radicals is injected into the main chamber, then the multi-point ignition occurs in the main chamber. The combustion pressure is measured to calculate the burning velocity mainly as a function of the sub-chamber volume, the diameter of the passage holes, and the equivalence ratio. In the case of RI (radical ignition) methods, the overall burning time became very short and the maximum burning pressure was slightly increased as compared with that of SI (spark ignition) method. The optimum design value of the sub-chamber is near 0.11 $cm^{-l}$ in the ratio of total area of holes to the sub-chamber volume.

동축류 확산화염의 OH 라다칼 분포 및 매연 특성 (OH Radical Distribution and Sooting Characteristics in Co-Flow Diffusion Flames)

  • 이원남;송영훈;차민석
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1997년도 제15회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.1-11
    • /
    • 1997
  • The soot and OH radical distributions have been experimentally studied in ethylene and propane laminar diffusion flames. The integrated soot volume fraction was measured along the centerline of a flame using a laser light extinction method. Planar laser light scattering and PLIF techniques are employed for the soot and OH radical distribution measurements utilizing Nd:YAG laser and OPO, FDO system. The concentration of OH radical is rapidly decreased at the edge of sooting region, which implies the importance of OH radical species on the soot oxidation process. For ethylene flames, the addition of air in fuel moves the OH radical distribution towards the center line of a flame at the soot oxidation region, while the concentration of OH radical remains relatively high at the soot formation region. The interaction between soot particles and OH radicals becomes more active with fuel-air at the soot oxidation region. For propane flames, however, any indication of the increased interaction between soot particles and OH radicals with fuel-air was not noticed.

  • PDF

산업 보일러용 오일버너에서의 저 NOx 연소 연구 (A Study on Low-NOx Combustion in an Oil Burner for an Industrial Boiler)

  • 신명철;김세원;박주원;방병열;양원;고영건
    • 한국연소학회지
    • /
    • 제14권1호
    • /
    • pp.19-24
    • /
    • 2009
  • A novel low NOx oil burner of 0.7 MW (for a 1 ton steam/hr industrial boiler) was designed and tested to investigate the combustion characteristics through in-flame measurement and flue gas analysis. Flame shape was observed by CCD camera and $CH^*/{C_2}^*$ radical distribution in the flame were observed, along with measurement of flue gas composition such as NOx and CO, for various heat inputs, excess airs and pressure of the fuel spary nozzles. The flame showed the two-zone structure: fuel-rich and fuel-lean zone, which was very favorable for the low-NOx combustion, and the NOx emission for haevy oil combustion was significantly reduced to < 150 ppm at 4 % $O_2$, compared with the NOx level of a conventional heavy oil burner.

  • PDF

미분탄 스월버너에서 PKS와 석탄 혼소가 화염 구조에 미치는 영향 (Effect of Co-firing PKS and Coal on Flame Structure in a Pulverized Coal Swirl Burner)

  • 신민호;성연모;최민성;이광수;최경민;김덕줄
    • 한국연소학회지
    • /
    • 제21권4호
    • /
    • pp.30-38
    • /
    • 2016
  • Flame structure of co-firing coal and palm kernel shell (PKS) was investigated in a pulverized coal swirl burner by particle image velocimetry (PIV). The pulverized coal swirl flame is operated with a PKS blending ratio of 10%, 20%, and 30%. For all operating conditions, flame structures such as internal recirculation zone (IRZ), outer recirculation zone (ORZ), and exhaust tube vortex (ETV) were observed. In the center of flame, the strong velocity gradient is occurred at the stagnation point where the volatile gas combustion actively takes place and the acceleration is increased with higher PKS blending ratio. OH radical shows the burned gas region at the stagnation point and shear layer between IRZ and ORZ. In addition, OH radical intensity increases for a co-firing condition because of high volatile matter from PKS. Because the volatile gas combustion takes place at lower temperature, co-firing condition (more than 20%) leads to oxygen deficiency and reduces the combustibility of coal particle near the burner. Therefore, increasing PKS blending ratio leads to higher OH radical intensity and lower temperature.

격강구의 연소과정에서 생성된 격강구진의 항산화 효과 (Antioxidant Effects of the Moxi with Ginger Tar Produced by Moxibustion with Ginger Combustion)

  • 서상록;양승범;김재효;안성훈;손인철
    • Korean Journal of Acupuncture
    • /
    • 제28권4호
    • /
    • pp.29-40
    • /
    • 2011
  • Objectives : This study estimated antioxidant effects of the moxi with ginger tar (MGT) ; chemical combustion products produced by moxibustion with ginger during combustion. Methods : To do this aim, we investigated total polyphenol and flavonoid contents, SOD (superoxide dismutase) scavenging activity, ABTS (2.2-azino-bis-3-erthylbenzo-thiazoline-6- sulfonic acid) & DPPH(2,2-Dipheny1-1 -picryl-hydrazyl) radical's scavenging ability of MGT. Results : Total polyphenol contents of MGT was $7.8{\pm}0.09$ mg/g in 10 mg/ml, SOD activity was $42.51{\pm}3.39%$ in 200 ug/ml, DPPH radical scavenging effect of MGT was $83.24{\pm}0.01%$ in 200 ug/ml and ABTS radical scavenging effect was $41.88{\pm}0.16%$ in 200 ug/ml. Conclusions : In this study, the effects of moxi with ginger could be induced by not only heating stimulus on acupoints but also chemical stimulus produced during combustion of moxibustion, MGF. The advanced study about biological mechanism through meridian system, skin aging, and inflammation on MGT will be required.

Laminar Flamelet Model을 이용한 비예혼합 난류제트화염의 연소과정 및 NO 생성 해석 (Laminar Flamelet Modeling of Combustion Processes and NO Formation in Nonpremixed Turbulent Jet Flames)

  • 김성구;김후중;김용모
    • 한국연소학회지
    • /
    • 제4권2호
    • /
    • pp.51-62
    • /
    • 1999
  • NOx formation in turbulent flames is strongly coupled with temperature, superequilibrium concentration of O radical, and residence time. This implies that in order to accurately predict NO level, it is necessary to develop sophisticated models able to account for the complex turbulent combustion processes including turbulence/chemistry interaction and radiative heat transfer. The present study numerically investigates the turbulent nonpremixed hydrogen jet flames using the laminar flamelet model. Flamelet library is constructed by solving the modified Peters equations and the turbulent combustion model is extended to nonadiabatic flame by introducing the enthalpy defect. The effects of turbulent fluctuation are taken into account by the presumed joint PDFs for mixture fraction, scalar dissipation rate, and enthalpy defect. The predictive capability of the present model has been validated against the detailed experimental data. Effects of nonequilibrium chemistry and radiative heat loss on the thermal NO formation are discussed in detail.

  • PDF