• Title/Summary/Keyword: Radical Combustion

Search Result 147, Processing Time 0.021 seconds

Concentration Interaction of Premixed and Triple-layer Flames in Lean Burn with Methane Fuel (희박연소에서 발생하는 메탄의 농도 상호작용과 삼중화염에 대한 연구)

  • Oh, Tae-Kyun;Chung, Suk-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.171-178
    • /
    • 2006
  • The performance in the practical combustion system including reciprocating engines and gas turbine combustors is being much governed by turbulent reacting flow that is often analyzed by both a laminar flamelets concept and flame interaction. The characteristics of laminar flame interaction have been investigated numerically to provide basic understanding of wrinkled turbulent flames under concentration interaction resulting from inhomogeneity in fuel-air mixing, especially focused on the transition of flame characteristics such as diffusion flame, partially premixed diffusion flame, and triple-layer flame by the variation in the degree of premixedness. The extinction stretch rates to the premixedness have also been obtained in this paper. The boundary defining the regime of the existence of triple-layer flames as functions of both stretch rate and premixedness has been determined which agrees well with previously reported experiment measuring OH radical concentration peaks based on PLIF.

OH, PAHs and Soot Ditribution in a Laminar Diffusion Flame Under Oxidizer Deficient Ambience (산화제 결핍 분위기에서의 층류 확산화염내 OH, PAHs 및 그을음 분포)

  • Shim, Sung-Hoon;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1348-1354
    • /
    • 2002
  • We investigate the flame behavior and spatial distribution of OH, PAHs and soot in a confined buoyant diffusion flame with decrease of the coflowing air flow rate. Direct photographs and Schlieren images represent that flame is Ally occupied by blue flame and becomes unstable, which is partially detached to the fuel nozzle tip in a near extinction flame under extremely reduced oxidizer condition. Laser induced fluorescence profiles clearly shows that OH is still generated in near-extinction flame, although intensity becomes weak with decreasing air flow rate. But soot scattering image cannot be seen any more in an oxidizer deficient ambience and simultaneously the PAHs are widely distributed downstream. These results are due to that a decrease of oxygen concentration in the combustion chamber leads to a temperature drop of flame, as a consequence, to a delay in soot growth and to a expanding of the PAHs, as soot precursors.

Effect of Hydrocarbons on the Promotion of NO-$NO_2$ Conversion in NonThermal Plasma DeNOx Treatment (비열 플라즈마에 의한 NO의 산화에 탄화수소 첨가제가 미치는 영향)

  • Shin, Hyun-Ho;Yoon, Woong-Sup
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.33-46
    • /
    • 2000
  • In the present study, a systematic chemical kinetic calculations were made to investigate the augmentation of NO-$NO_2$ conversion due to the addition of various hydrocarbons (methane, ethylene, ethane, propene, propane) in the nonthermal plasma treatment. It is included in the present conclusion that the reaction between hydrocarbon and oxygen radicals induced by electron collision, is believed to be a primarily process for triggering the overall NO oxidation and the eventual NOx reduction. Upon the completion of the initiating step, various radicals (OH, $NO_2$ etc.) successively produced by hydrocarbon decomposition form the primary path of NO-$NO_2$ conversion. When the initiating step is not activated, hydrocarbon consumption rate appeared to be very low, thereby the targeted level of NO conversion can only be achieved by the addition of more input energy. Present study showed ethylene and propene to have higher affinity with 0 radical under all conditions, thereby both of these hydrocarbons show very fast and efficient NO-$NO_2$ oxidation. It was also shown that propene is superior to ethylene in the aspect of NOx removal.

  • PDF

Unsteady Response of Counterflow Nonpremixed Flames Interacting with a Votex (와동과 상호작용하는 대향류 비예혼합화염의 비정상 응답특성)

  • Oh, Chang-Bo;Park, Jeong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.52-60
    • /
    • 2002
  • A two-dimensional direct numerical simulation is performed to investigate the flame structure of $CH_4/N_2-Air$ counterflow nonpremixed flame interacting with a single vortex. The detailed transport properties and a modified 16-step augmented reduced mechanism based on Miller and Bowman's detailed reaction mechanism are adopted in this calculation. To quantify the strain on flame induced by a vortex, a scalar dissipation rate (SDR) is introduced. Results show that the fuel and air-side vortex cause an unsteady extinction. In this case, the flame interacting with a vortex is extinguished at much larger SDR than steady flame. It is also found that air-side vortex extinguishes a flame more rapidly than fuel-side vortex. The unsteady effect induced by flame-vortex interaction does not lead to a transient OH overshoot of the maximum steady concentration observed in experiment, while $HO_2$ radical increases more than the maximum steady concentration with increasing SDR. In addition, it is seen that NO and $NO_2$ are not sensitive to the unsteady variation of SDR.

  • PDF

Effect of Hydrocarbons on the Promotion of $NO-NO_{2}$ Conversion in NonThermal Plasma DeNOx Treatment (비열 플라즈마에 의한 NO의 산화에 탄화수소 첨가제가 미치는 영향)

  • Shin, Hyun-Ho;Yoon, Woong-Sup
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.178-188
    • /
    • 2000
  • In the present study, a systematic chemical kinetic calculations were made to investigate the augmentation of $NO-NO_{2}$ conversion due to the addition of various hydrocarbons (methane, ethylene, ethane, propene, propane) in the nonthermal plasma treatment. It is included in the present conclusion that the reaction between hydrocarbon and oxygen radicals induced by electron collision, is believed to be a primarily process for triggering the overall NO oxidation and the eventual NOx reduction. Upon the completion of the initiating step, various radicals (OH, $HO_{2}$ etc.) successively produced by hydrocarbon decomposition form the primary path of $NO-NO_{2}$ conversion. When the initiating step is not activated, hydrocarbon consumption rate appeared to be very low, thereby the targeted level of NO conversion can only be achieved by the addition of more input energy. Present study showed ethylene and propene to have higher affinity with 0 radical under all conditions, thereby both of these hydrocarbons show very fast and efficient $NO-NO_{2}$ oxidation. It was also shown that propene is superior to ethylene in the aspect of NOx removal.

  • PDF

DeNOx modeling in $N_{2}/O_{2}$ gas by pulsed corona discharge ($N_{2}/O_{2}$ 혼합가스에서 펄스코로나 방전을 이용한 NOx 제거 모델링에 관한 연구)

  • Park, Kwang-Seo;Lee, Hyoung-Sang;Chun, Bae-Hyeock;Shin, Hyun-Ho;Yoon, Woong-Sup;Chun, Kwang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.117-128
    • /
    • 1999
  • The removal of nitrogen oxides(NOx) from $N_{2}/O_{2}$ gas using a pulsed corona discharge was investigated as a function of the reduced electric field(E/N) and the energy density(J/L). A kinetic model was developed to characterize the chemical reactions taking place in a pulsed corona discharge reactor. The model calculates the fractional concentrations of radical species at each pulse-on period and utilizes the radicals to remove NOx for the subsequent pulse-off period. Electron collision reaction data are calculated using ELENDIF program to solve Boltzmann equation for electron energy distribution function, and the subsequent chemical reactions are calculated using CHEMKIN-II program to solve stiff ODE(ordinary differential equation) problems for species concentrations. The corona discharge energy per pulse and the time-space averaged E/N were obtained by fitting the model to experimental data. The model calculation shows good agreement with the experimental data, and predicts the formation of other species such as $NO_{2}$, $O_{3}$ and $N_{2}O$.

  • PDF

A Study of Characteristics of Combustion Radical and Exhausted Emissions in a Radiant Burner with Porous Ceramic Mat (다공성 세라믹 매트를 이용한 복사버너에서의 연소라디칼 특성과 배기배출물에 관한 연구)

  • Kim, Young-Su;Cho, Seung-Wan;Kim, Gyu-Bo;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.6 s.261
    • /
    • pp.539-546
    • /
    • 2007
  • An experimental study was performed to investigate the characteristics of chemiluminescence in a radiant burner, varying the excess air ratio from 0.91 to 1.67 at firing rate 80.5 to 134.2 kW/m2 on $OH^*,\;CH^*,\;{C_2}^*$ in LNG-Air premixed flames. The signals from electronically excited states of $OH^*,\;CH^*,\;{C_2}^*$ were detected using a Intensified Couple Charged Detector (ICCD) camera. The measurements of exhausted emission were made to investigate the correlation between chemiluminescence and emissions. The chemiluminescence intensity was increased with increase of firing rate like characteristics of $NO_x$ emission. $NO_x$ also increased with increase of firing rate and excess air ratio. It is found that offset of firing rate is more dominant excess air ratio $NO_x$ emission. The maximum chemiluminescence intensity occurs near the stoichiometric excess air ratio or lean conditions in case of high firing rate and the maximum intensity occurs rather than rich conditions in case of relatively low firing rate. Amount of $NO_x$ emission is maximum at near stoichiometric excess air ratio, which is chemiluminescence intensity is maximum.

Numerical Study on Flame Structure and Pollutant Formation for Syngas Turbulent Nonpremixed Swirl Burner (석탄가스 선회난류 연소기의 화염구조 및 공해물질 배출특성 해석)

  • Lee, Jeong-Won;Kang, Sung-Mo;Kim, Yong-Mo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.449-452
    • /
    • 2007
  • The present study numerically investigate the effects of the Syngas chemical kinetics on the basic flame properties and the structure of the Syngas diffusion flames. In order to realistically represent the turbulence-chemistry interact ion and the spatial inhomogeneity of scalar dissipation rate. the Eulerian Particle Flamelet Model(EPFM) with multiple flamelets has been applied to simulate the combustion processes and NOx formation in the syngas turbulent nonpremixed flames. Due to the ability for interactively describing the transient behaviors of local flame structures with CFD solver, the EPFM model can effectively account for the detailed mechanisms of NOx format ion including thermal NO path, prompt and nitrous NOx format ion, and reburning process by hydrocarbon radical without any ad-hoc procedure. validation cases include the Syngas turbulent nonpremixed jet and swirling flames. Based on numerical results, the detailed discussion has been made for the sensitivity of the Syngas chemical kinetics as well as the precise structure and NOx formation characteristics of the turbulent Syngas nonpremixed flames.

  • PDF

A Study on the Lift Flame Structure with Composition Ratios in Premixed Impinging Jet Flames of Syngas (H2/CO) (합성가스(H2/CO) 예혼합 충돌 제트화염에서 조성비에 따른 부상 화염구조에 관한 연구)

  • KIM, SEULGI;SIM, KEUNSEON;LEE, KEEMAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.2
    • /
    • pp.220-229
    • /
    • 2016
  • A numerical study on lifted flame structure in impinging jet geometry with syngas composition ratio was investigated. The numerical calculations including chemical kinetic analysis were conducted using SPIN application of the CHEMKIN Package with Davis-Mechanism. The flame temperature and velocity profiles were calculated at the steady state for one-dimensional stagnation flow geometry. Syngas mixture compositions were adjusted such as $H_2:CO=10:90(10P)$, 20 : 80 (20P), 30 : 70 (30P), 40 : 60 (40P), 50 : 50 (50P). As composition ratios are changed from 10P to 50P, the axial velocity and flame temperature increase because the contents of hydrogen that have faster burning velocity increase. This phenomenon is due to increase in good reactive radicals such as H, OH radical. As a result of active reactivity, the burning velocity is more faster and this is confirmed by numerical methods. Consequently, combustion reaction zone was moved to burner nozzle.

Synthesis of Tungsten Boride using SHS(Self-propagating High-temperature Synthesis) and Effect of Its Parameters (자전연소 합성법을 이용한 W-B 화합물 합성 및 조건 변수의 영향)

  • Choi, Sang-Hoon;Nersisyan, Hayk;Won, Changwhan
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.249-254
    • /
    • 2014
  • Due to their unique properties, tungsten borides are good candidates for the industrial applications where certain features such as high hardness, chemical inertness, resistance to high temperatures, thermal shock and corrosion. In this study, conditions were investigated for producing tungsten boride powder from tungsten oxide($WO_3$) by self-propagating high-temperature synthesis (SHS) followed by HCl leaching techniques. In the first stage of the study, the exothermicity of the $WO_3$-Mg reaction was investigated by computer simulation. Based on the simulation experimental study was conducted and the SHS products consisting of borides and other compounds were obtained starting with different initial molar ratios of $WO_3$, Mg and $B_2O_3$. It was found that $WO_3$, Mg and $B_2O_3$ reaction system produced high combustion temperature and radical reaction so that diffusion between W and B was not properly occurred. Addition of NaCl and replacement of $B_2O_3$ with B successfully solved the diffusion problem. From the optimum condition tungsten boride($W_2B$ and WB) powders which has 0.1~0.9 um particle size were synthesized.