• 제목/요약/키워드: Radiator grille

검색결과 5건 처리시간 0.018초

게이트 종류에 따른 라디에이터 그릴의 해석결과와 비교에 대한 연구 (A Study on Analysis Results and Comparison of Radiator Grille by Gate Type)

  • 유영태;이춘규
    • Design & Manufacturing
    • /
    • 제18권1호
    • /
    • pp.39-45
    • /
    • 2024
  • The radiator grille has several air intakes. These holes cause the resin flows to divide and merge. As a result, weld lines occur. These weld lines and other problems appear in various forms depending on the grille pattern. To solve these problems, designers use injection molding analysis to proactively identify problems and determine optimal molding conditions. In this study, we conducted research on the effect and optimization of gates on injection molding of automobile radiator grille. The gates used in molding analysis are the side gate and the grape gate. We then compared the effects of each gate on weld line, injection pressure, clamping force, and deflection. As a result of the analysis applying the side gate, weld lines occurred in all major grilles. In contrast, in applying the grape gate, small weld lines occurred in the minor grille, but the weld line in the major grille could be prevented. The maximum injection pressure was reduced by 48.2% in applying the grape gate compared to applying the side gate. Additionally, the maximum clamping force was also reduced by 17.6%. To compare the amount of deformation, deflection values were measured at 20 identical locations. As a result, applying the grape gate showed a deformation improvement of at least 5.2% and up to 77.9%.

3-D THERMAL-HYDRAULIC ANALYSIS FOR AIRFLOW OVER A RADIATOR AND ENGINE ROOM

  • Hsieh, C.T.;Jang, J.Y.
    • International Journal of Automotive Technology
    • /
    • 제8권5호
    • /
    • pp.659-666
    • /
    • 2007
  • In the present study, a numerical analysis of the three-dimensional heat transfer and fluid flow for a vehicle cooling system was developed. The flow field of the engine room between the grille and radiator was analyzed. The results show that, as the airflow inlet grille angle $\alpha$ is varied from $15^{\circ}$ to $-15^{\circ}$, the air flow rate compared with $\alpha=0^{\circ}$(horizontal) changes from -11.9% to +5.1%; while the heat flux from the radiator changes from -9.2% to +4.4%. When the airflow inlet bumper angle $\beta$ is varied from $-5^{\circ}$ to $+15^{\circ}$, the heat flux from the radiator compared with $\beta=0^{\circ}$(horizontal) increases up to +4.4%. When the airflow inlet grille angle $\alpha=-15^{\circ}$ and the bumper grill angle $\beta=+15^{\circ}$, the airflow rates and heat flux compared with($\alpha=0^{\circ}$, $\beta=0^{\circ}$) can be increased to +9.5% and +7.5%, respectively. The results indicate that the optimal angles for cooling efficiency are used.

소형 승용 차량의 그릴 형상이 차량의 공력 성능에 미치는 영향에 관한 수치해석 연구 (A Numerical Study of the Effect of Small Passenger Car's Grille Shape on the Aerodynamic Performance)

  • 김재민;조형규;김택기;김문상;김용석;김용년
    • 한국자동차공학회논문집
    • /
    • 제23권1호
    • /
    • pp.74-87
    • /
    • 2015
  • A numerical parametric study has been accomplished to figure out the effect of grille shape built in a small passenger car on the aerodynamic performance such as drag and mass flow rate through CRFM(Condenser Radiator Fan Module). Three grille opening parameters and three grille mesh parameters are selected and adopted to a simple shape passenger car model. This research will provide a design guideline for grille opening geometry and mesh shape in the grille. FLUENT, which is very well known commercial code, hires k-${\epsilon}$ turbulence model at the driving speed of 110km/h with moving wall boundary condition. A porous media condition is prepared to estimate the pressure drop amount through CRFM parts.

소형버스 냉각성능 향상 연구(I) (Study for the Cooling Performance Improvement of a Mini Bus)

  • 류명석
    • 한국자동차공학회논문집
    • /
    • 제13권2호
    • /
    • pp.10-15
    • /
    • 2005
  • This study was initiated to evaluate the cooling performance of CAC (charged air cooler) and radiator in the engine room of a mini bus. So we had firstly to predict the mass flow rate coming from radiator grille and front bum per opening using computational fluid dynamics (CFD) simulation based on 3D configuration. And simulations were carried out for different cooling module layout and bum per opening hole size on sam e vehicle operating condition. Simulation results show that CAC cooling performance at reverse protecting plate-applying model was much efficient than that of the bum per opening hole size-increasing model in IMTD point of view. Part of the CFD simulation results was com pared to with experimental data. It was confirm ed that the CFD approach using STAR-CD based on pursuing no-com promise solution could provide design engineers with useful design information in the early design stage of vehicle development.

자동차 Instrument Panel에 사용된 PC/ABS계의 재활용 (Recycling of PC/ABS Blend Used in Instrument Panel of Automotive)

  • 이창형;정인권;이용무;옥성현;최형기
    • 공업화학
    • /
    • 제10권1호
    • /
    • pp.118-123
    • /
    • 1999
  • 본 연구에서는 자동차의 instrument panel로부터 분리, 회수된 재생 PC/ABS계에 흡착되어 있는 PU foam이 가공온도조건에 따라 PC/ABS계의 모폴로지 및 기계적 물성에 미치는 영향을 조사함으로써 상용화제 첨가없이 PU의 열적성질을 이용한 모폴로지 제어에 의해 큰 폭의 물성저하를 막아 재생 PC/ABS를 자동차 라디에디터 그릴 소재로 적용하고자 하였다. 가공 온도조건에 따른 PU의 열적특성에 초점을 맞추어 고온 ($260^{\circ}C$) 및 저온 ($220^{\circ}C$)에서 재생PC/ABS와 신재 PC/ABS를 다양한 조성으로 용융 블렌드하여 고차구조 및 기계적 물성을 조사하였다. 신재 함량이 증가함에 따라 물성이 향상되었고, 고온 및 저온용융 블렌드물의 물성에는 큰 차이가 없었으나 충격강도는 고온용융 블렌드물이 월등히 우수하였다. 이것은 PU foam이 고온에서 높은 전단응력을 받아 보다 미세하고 균일하게 분산되었기 때문이라는 것을 발견했다.

  • PDF