• Title/Summary/Keyword: Radiative heating rates

Search Result 16, Processing Time 0.029 seconds

A Study on Temperature Characteristics of KSTAR PFC and Vacuum Vessel at Baking Phase (KSTAR PFC와 진공용기의 가열탈리 단계에서의 온도특성에 관한 연구)

  • Yoo, Seong-Yeon;Kim, Young-Jin;Jung, Nam-Yong;Kim, Kyung-Min;Lee, Je-Myo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.3
    • /
    • pp.158-168
    • /
    • 2015
  • To create an ultra-high vacuum state at the KSTAR, the temperature of plasma facing component and vacuum vessel should be maintained at $300^{\circ}C$ and $110^{\circ}C$ respectively at a baking phase. The purpose of this research is obtaining the target baking temperatures. Experiments were performed to investigate the temperature characteristics of PFC and VV at the baking phase. Thermal network analysis was used to find heat transfer rates among PFC, VV and other components, and this analysis was verified by using the experimental data. The required heating energy of the PFC and the heating and cooling energy of the VV for the target baking temperatures were found to be 346 kW, 28 kW, and 136 kW, respectively.

NATURAL CONVECTION IN A TRIANGULAR POOL WITH VOLUMETRIC HEAT GENERATION (삼각형 형상의 풀 내에서 열원에 의한 자연대류 수치해석)

  • Kim, Jong-Tae;Park, Rae-Joon;Kim, Hwan-Yeol;Song, Jin-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.302-310
    • /
    • 2011
  • A fluid in an enclosure can be heated by electric heating, chemical reaction, or fission heat. In order to remove the volumetric heat of the fluid, the walls surrounding the enclosure must be cooled. In this case, a natural convection occurs in the pool of the fluid, and it has a dominant role in heat transfer to the surrounding walls. It can augment the heat transfer rates tens to hundreds times larger than conductive heat transfer. The heat transfer by a natural convection in a regular shape such as a square cavity or semi-circular pool has been studied experimentally and numerically for many years. A pool of an inverted triangular shape with 10 degree inclined bottom walls has a good cooling performance because of enhanced boiling critical heat flux (CHF) compared to horizontal downward surface. The coolability of the pool is determined by comparing the thermal load from the pool and the maximum heat flux removable by cooling mechanism such as radiative or boiling heat transfer on the pool boundaries. In order to evaluate the pool coolability, it is important to correctly expect the thermal load by a natural convection heat transfer of the pool. In this study, turbulence models with modifications for buoyancy effect were validated for unsteady natural convections by volumetric heating. And natural convection in the triangular pool was evaluated by using the models.

  • PDF

Parameterization for Longwave Scattering Properties of Ice Clouds with Various Habits and Size Distribution for Use in Atmospheric Models

  • Jee, Joon-Bum;Lee, Kyu-Tae
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.39-45
    • /
    • 2013
  • A parameterization for the scattering of longwave radiation by ice clouds has been developed based on spectral scattering property calculations with shapes and sizes of ice crystals. For this parameterization, the size distribution data by Fu (1996) and by Michell and Arnott (1994) are used. The shapes of ice crystal considered in this study are plate, solid column, hollow column, bullet-rosette, droxtal, aggregate, and spheroid. The properties of longwave scattering by ice crystals are presented as a function of the extinction coefficient, single-scattering albedo, and asymmetry factor. The heating rate and flux by the radiative parameterization model are calculated for wide range of ice crystal sizes, shapes, and optical thickness. The results are compared with the calculated results using a six-stream discrete ordinate scattering algorithm and Chou's method. The new method (with various habits and size distributions) provides a good simulation of the scattering properties and cooling rate in optically thin clouds (optical thickness < 5). Depending on the inclusion of scattering by ice clouds, the errors in the calculation of the cooling rates are significantly different.

A STUDY ON THE FLAMMABILITY OF NON-FLAME-RETARDANT AND FLAME-RETARDANT MATERIALS BY USING CONE CALORIMETER

  • Yanai, Eiji;Suzuki, Takeshi;Yamada, Tokiyoshi
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.85-92
    • /
    • 1997
  • Flammability of non-flame-retardant and flame-retardant materials was studied by using cone calorimeter Also, relations between the results obtained by using cone calorimeter and those obtained by the flammability test of japanese fire Service Law were examined. The results are as follows: 1) The ignition time of the molten specimens is relatively long, whereas the ignition time of the non-molten specimens is short. None of remarkable difference of the ignition time has been found between non-flame-retardant and flame-retardant materials specimens. 2) The peak heat release rates of flame-retardant materials are smaller than those of non-flame- retardant materials. 3) The carbon monoxide and smoke evolved from flame-retardant materials generate much more than those evolved from non-flame-retardant materials. 4) Even if flame-retardant materials are passed by the flammability test of Japanese Fire Service Law, they burn easily under external radiative heating condition.

  • PDF

HIGH Ra NUMBER NATURAL CONVECTION IN A TRIANGULAR POOL WITH A HEAT GENERATION (열원이 있는 삼각형 풀의 높은 Ra수 자연대류)

  • Kim, Jong-Tae;Park, Rae-Joon;Kim, Hwan-Yeol;Hong, Seong-Wan;Song, Jin-Ho;Kim, Sang-Baik
    • Journal of computational fluids engineering
    • /
    • v.16 no.3
    • /
    • pp.66-74
    • /
    • 2011
  • A fluid in an enclosure can be heated by electric heating, chemical reaction, or fission heat. In order to remove the volumetric heat of the fluid, the walls surrounding the enclosure must be cooled. In this case, a natural convection occurs in the pool of the fluid, and it has a dominant role in heat transfer to the surrounding walls. It can augment the heat transfer rates tens to hundreds times larger than conductive heat transfer. The heat transfer by a natural convection in a regular shape such as a square cavity or semi-circular pool has been studied experimentally and numerically for many years. A pool of an inverted triangular shape with 10 degree inclined bottom walls has a good cooling performance because of enhanced boiling critical heat flux (CHF) compared to horizontal downward surface. The coolability of the pool is determined by comparing the thermal load from the pool and the maximum heat flux removable by cooling mechanism such as radiative or boiling heat transfer on the pool boundaries. In order to evaluate the pool coolability, it is important to correctly expect the thermal load by a natural convection heat transfer of the pool. In this study, turbulence models with modifications for buoyancy effect were validated for unsteady natural convections by volumetric heating. And natural convection in the triangular pool was evaluated by using the models.

The Changes of UV-B Radiation at the Surface due to Stratospheric Aerosols (성층권 에어로졸에 의한 지표면 UV-B 복사량 변동)

  • Jai-Ho Oh;Joon-Hee Jung;Jeong-Woo Kim
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.21 no.1
    • /
    • pp.31-46
    • /
    • 1993
  • A radiative transfer model with two-stream/delta-Eddington approximation has been developed to calculate the vertical distributions of atmospheric heating rates and radiative fluxes. The performance of the model has been evaluated by comparison with the results of ICRCCM (Intercomparison of radiative codes in climate models). It has been demonstrated that the presented model has a capability to calculate the solar radiation not only accurately but also economically. The characteristics of ultraviolet-B radiation (UV-B; 280-320nm) are examined by comparison of relation between the flux at the top of atmosphere and that at the surface. The relation of UV-B is quadratic due to the strong ozone absorption in this band. Also, the dependence of the UV-B radiation on the stratospheric ozone depletion and stratospheric aerosol haze due to volcanic eruption on the stratospheric ozone depletion and stratospheric aerosol haze due to volcanic eruption has been tested with various solar zenith angles. The surface UV-B increases as the solar zenith angle increases. The existence of stratospheric aerosols causes an increase in the planetary albedo due to the aerosols' backscattering. The planetary albedo with aerosol's effect has been increases as the solar zenith angle is not sensitive. It may be caused by the fact that the aerosols' scattering effect becomes saturated with the relatively long path length in a large solar zenith angle. Finally, the regional impact of stratospheric aerosols due to volcanic eruption on the intensity of UV-B radiation at the surface has been estimated. A direct effect is that the flux is diminished at the low latitudes, while it is enhanced in the high latitudes by the aerosols' photon trap or twilight effect. In the high latitudes, both aerosols' scattering and ozone absorption have strong and opposite impacts to the surface UV-B radiation is located at the mid-latitudes during spring season in both hemispheres.

  • PDF