• Title/Summary/Keyword: Radiative heat transfer

Search Result 247, Processing Time 0.021 seconds

Modeling of the Ignition and Combustion of Single Aluminum Particle (단일 알루미늄 연료 입자의 점화 및 연소 모델링)

  • Yang, Hee-Sung;Lim, Ji-Hwan;Kim, Kyung-Moo;Lee, Ji-Hyung;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.187-192
    • /
    • 2008
  • A simplified model for an isolated aluminum particle burning in air is presented. Burning process consists of two stages, ignition and quasi-steady combustion (QSC). In ignition stage, aluminum which is inside of oxide film melts owing to the self heating called heterogeneous surface reaction (HSR) as well as the convective and radiative heat transfer from ambient air until the particle temperature reaches melting point of oxide film. In combustion stage, gas phase reaction occurs, and quasi-steady diffusion flame is assumed. For simplicity, 1-dimesional spherical symmetric condition and flame sheet assumption are also used. Extended conserved scalar formulations and modified Shvab-Zeldovich functions are used that account for the deposition of metal oxide on the surface of the molten aluminum. Using developed model, time variation of particle temperature, masses of molten aluminum and deposited oxide are predicted. Burning rate, flame radius and temperature are also calculated, and compared with some experimental data.

  • PDF

Effect of Pyrolyzing Fuel Position on Ignition and Flame Propagation in a Cylindrical Enclosure (원형공간내 열분해 연료의 위치변화에 따른 점화 및 화염전파 영향)

  • Han, Jo-Yeong;Kim, Jeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.133-142
    • /
    • 2001
  • Investigation on ignition and flame propagation of pyrolyzing fuel in a cylindrical enclosure is accomplished. The pyrolyzing fuel of cylindrical shape is located in an outer cylinder sustained at high-temperature. Due to gravity, the buoyancy motion is inevitably incurred in the enclosure and this affects the flame initiation and propagation behavior. The radiative heat transfer plays an important role since a high temperature difference is involved in the problem. Therefore in all cases presented here, the intrinsic radiation effects are considered. Numerical studies have been performed over various governing parameters, such as Grashof number, overheat ratio, and vertical fuel eccentricity. Depending on the Grashof number, the flame behavior is found to be totally different: a separated visible flame appears as the Grashof number reaches 10(sup)7. The location of flame onset is also affected by the vertical eccentricity of inner pyrolyzing fuel as well as thermal conditions applied.

EFFECT OF INNER WALL TEMPERATURE CONDITION OF TUBULAR REACTOR ON PRODUCTION OF BY-PRODUCT FOR ETHANE CRACKING PROCESS (에탄 열분해 공정에서 관형 반응기 내벽 온도 조건이 부산물 생성에 미치는 영향)

  • Shin, C.Y.;Kim, H.J.;Ahn, J.
    • Journal of computational fluids engineering
    • /
    • v.21 no.3
    • /
    • pp.110-117
    • /
    • 2016
  • It is a essential to minimize production of by-products for economically effective petrochemical process. In order to find key factor to achieve the effective process, 2-dimensional computational fluid dynamics considering a variety of physics such as convective and radiative heat transfer and thermal cracking of ethane are carried out. The reactor is modeled as an isothermal tube, whose length is 1.2 m and radius is 0.01 m, respectively. At first, the axial distribution of representative by-products in ethane thermal cracking are investigated in each inner wall temperature conditions. Then the comparison between concentration of propene($C_3H_6$) and ethane conversion is discussed with respect to inner wall temperature conditions too. Finally, both reaction rate and turbulent kinetic energy are used to identify the production mechanism of $C_3H_6$ under the intersection point in the plot for $C_3H_6$ molar concentration and ethane conversion.

Ignition and combustion phenomena of a coal-water slurry droplet (석탄-물 슬러리 액적의 증발 및 점화현상 해석)

  • An, Guk-Yeong;Baek, Seung-Uk;Kim, Gwan-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.632-640
    • /
    • 1996
  • The ignition and combustion characteristics of CWS droplets were investigated in the postflame region generated by a flat burner. The effect of radiation by screen and heating eleements ws taken into account. Also the theoretical claculations considering the temporal temeprature variation have been performed and compared with experimental results. The ignition delays were reduced by the radiation of the screen or heating elements. Therfore the radiation was considered to play some role in predicting the ignition delay.

Numerical study of a coating with pigment to selectively reflect the thermal radiation from fire (화염 열복사의 파장별 선택적 반사를 위한 도료 코팅에 대한 수치적 연구)

  • Byeon, Do-Yeong;Baek, Seung-Uk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.399-407
    • /
    • 1998
  • The infrared reflection coatings with pigment can be used to protect the surfaces of combustible materials exposed to fire. To obtain high reflectivities in the infrared range (0.5-10.mu.m) important to fire, several dielectric pigments, such as titanium dioxide, iron oxide, and silicon, can be synthesized to polymer coatings. The theoretical analysis shows that the coating design with particles diameter in the 1.5 to 2.5.mu.m range and volume fraction in the 0.1 to 0.2 range is estimated to be optimal. In the analysis of the radiation, the dependent scattering, absorption by polymeric binder, and the internal interface reflection are considered. In addition, the temperature distribution in the semi-transparent coating layer and an opaque substrate (PMMA) is also presented.

Simulation of flame propagation in suspension of coal particles (석탄입자가 존재하는 공기중에서의 화염전파에 관한 모사)

  • 윤길원;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.36-43
    • /
    • 1988
  • A two phase model for the simulation of flame propagation has been developed and applied to a mixture of coal air. The effects associated with changes in the initial coal partial equivalence ratio and the initial diameter of particles on the structure of laminar flame propagation have been studied qualitatively and quantitatively. Especially the flame structure, the burning velocity, and the thermal behavior were evaluated. It was found that the radiative heat transfer absolutely dominates over the conduction mode. The increase in particle size was seen to contribute to an obvious increase in burning velocity for fuel lean and stoichiometric mixture. But for fuel rich mixture, the burning velocity was found to exhibit a weaker dependence on particle size.

Temperature Analysis for the Linear Cell in the Vapor Deposition Process

  • Choi Jongwook;Kim Sungcho;Kim Jeongsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1329-1337
    • /
    • 2005
  • The OLED (Organic Light Emitting Diodes) display recently used for the information indicating device has many advantages over the LCD (Liquid Crystal Display), and its demand will be increased highly. The linear cell should be designed carefully considering the uniformity of thin film on the substrate. Its design needs to compute the temperature field analytically because the uniformity for the thin film thickness depends on the temperature distribution of the source (organic material). In the present study, the design of the linear cell will be modified or improved on the basis of the temperature profiles obtained for the simplified linear cell. The temperature distributions are numerically calculated through the STAR-CD program, and the grids are generated by means of the ICEM CFD program. As the results of the simplified linear cell, the temperature deviation was shown in the parabolic form among the both ends and the center of the source. In order to reduce the temperature deviation, the configuration of the rectangular ends of the crucible was modified to the circular type. In consequence, the uniform temperature is maintained in the range of about 90 percent length of the source. It is expected that the present methods and results on the temperature analysis can be very useful to manufacture the vapor deposition device.

Estimation of Surface Firebreak through Mathematical Method for Radiative Heat Transfer (복사열전달 수치해석을 통한 지표화 방화선 구축 폭 산정)

  • Kim, Dong-Hyun;Lee, Myung-Bo;Tanaka, Takeyoshi
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.144-147
    • /
    • 2010
  • 방화선 구축 작업은 산불확산이 진행되고 있는 화선으로부터 확산진행방향의 연소물질을 제거하여 화염이 확산되지 않도록 하는 대표적인 간접진화 방법이다. 하지만 방화선 구축 폭에 대한 기준은 산불진화 경험을 통해 약 0.5~1.5m폭으로 작업하는 것으로 알려져 있고 열전달 수치해석 및 실험 등을 통해 아직 구명된 바 없다. 이에 본 연구에서는 소나무 낙엽층을 대상으로 풍속 0~5m/s, 경사 $0{\sim}50^{\circ}$의 조건에 대해 복사열전달 수치해석을 이용하여 방화선 구축 폭을 산정하였다. 그 결과, 복사열유속에 의한 낙엽의 발화가 발생하지 않는 거리는 각 조건별 평균화염높이에 대해서는 0.35~0.65m, 최대화염높이에 대해서는 0.75~1.05m로 산정되었다. 따라서 안전율을 고려한 적정 방화선 구축 폭은 최대화염높이를 적용한 1.05m가 적합할 것으로 판단되며 향후, 실험 및 현장사례조사를 통한 적정 방화선 구축 폭에 대한 비교분석 연구가 추가적으로 필요할 것으로 판단된다.

  • PDF

Design of muon production target system for the RAON μSR facility in Korea

  • Jeong, Jae Young;Kim, Jae Chang;Kim, Yonghyun;Pak, Kihong;Kim, Kyungmin;Park, Junesic;Son, Jaebum;Kim, Yong Kyun;Lee, Wonjun;Lee, Ju Hahn
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2909-2917
    • /
    • 2021
  • Following the launch of Rare Isotope Science Project in December 2011, a heavy ion accelerator complex in South Korea, named RAON, has since been designed. It includes a muon facility for muon spin rotation, relaxation, and resonance. The facility will be provided with 600 MeV and 100 kW (one-fourth of the maximum power) proton beam. In this study, the graphite target in RAON was designed to have a rotating disk shape and was cooled by radiative heat transfer. This cool-down process has the following advantages: a low-temperature gradient in the target and the absence of a liquid coolant cooling system. Monte Carlo simulations and ANSYS calculations were performed to optimize the target system in a thermally stable condition when the 100 kW proton beam collided with the target. A comparison between the simulation and experimental data was also included in the design process to obtain reliable results. The final design of the target system will be completed within 2020, and its manufacturing is in progress. The manufactured target system will be installed at the RAON in the Sindong area near Daejeon-city in 2021 to carry out verification experiments.

Enhance photoelectric efficiency of PV by optical-thermal management of nanofilm reflector

  • Liang, Huaxu;Wang, Baisheng;Su, Ronghua;Zhang, Ao;Wang, Fuqiang;Shuai, Yong
    • Advances in nano research
    • /
    • v.13 no.5
    • /
    • pp.475-485
    • /
    • 2022
  • Crystalline silicon photovoltaic cells have advantages of zero pollution, large scale and high reliability. A major challenge is that sunlight wavelength with photon energy lower than semiconductor band gap is converted into heat and increase its temperature and reduce its conversion efficiency. Traditional cooling PV method is using water flowing below the modules to cool down PV temperature. In this paper, the idea is proposed to reduce the temperature of the module and improve the energy conversion efficiency of the module through the modulation of the solar spectrum. A spectrally selective nanofilm reflector located directly on the surface of PV is designed, which can reflect sunlight wavelength with low photon energy, and even enhance absorption of sunlight wavelength with high photon energy. The results indicate that nanofilm reflector can reduce spectral reflectivity integral from 9.0% to 6.93% in 400~1100 nm wavelength range, and improve spectral reflectivity integral from 23.1% to 78.34% in long wavelength range. The nanofilm reflector can reduce temperature of PV by 4.51℃ and relatively improved energy conversion efficiency of PV by 1.25% when solar irradiance is 1000 W/m2. Furthermore, the nanofilm reflector is insensitive in sunlight's angle and polarization state, and be suitable for high irradiance environment.