• Title/Summary/Keyword: Radiative cooling

Search Result 123, Processing Time 0.028 seconds

MULTIPLE SUPERNOVA EXPLOSIONS INSIDE A WIND-BLOWN BUBBLE

  • Cho, Hyun-Jin;Kang, Hye-Sung
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.161-164
    • /
    • 2007
  • We calculate the evolution of multiple supernova (SN) explosions inside a pre-exiting bubble blown up by winds from massive stars, using one-dimensional hydrodynamic simulations including radiative cooling and thermal conduction effects. First, the development of the wind bubble driven by collective winds from multiple stars during the main sequence is calculated. Then multiple SN explosion is loaded at the center of the bubble and the evolution of the SN remnant is followed for $10^6$ years. We find the size and mass of the SN-driven shell depend on the structure of the pre-existing wind bubble as well as the total SN explosion energy. Most of the explosion energy is lost via radiative cooling, while about 10% remains as kinetic energy and less than 10% as thermal energy of the expanding bubble shell. Thus the photoionization and heating by diffuse radiation emitted by the shock heated gas is the most dominant form of SN feedback into the surrounding interstellar medium.

EVALUATION OF METHODOLOGY FOR AXISYMMETRIC SIMULATION OF RCCS IN VHTR (초고온가스로의 RCCS 해석을 위한 축대칭 모사 방법론 평가)

  • Kim, S.H.;Cho, B.H.;Tak, N.I.;Kim, M.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • RCCS is a passive safety-related system that removes the decay heat of VHTR when normal decay heat removal systems are in failure. Understanding thermo-hydraulics of RCCS is important to design a safer VHTR. RCCS consists of 292 cooling panels, which are placed in the reactor cavity. The layout of RCCS gives an idea that, for CFD simulations, cooling panels can be assumed to be one annulus tube. This assumption can reduce significantly the computational time, especially for the unsteady simulation. To simulate RCCS in an axisymmetric manner, three models were suggested and compared. Each model has (1) the same outer radius, (2) the same cross-sectional area (3) the same pressure drop, respectively, as the RCCS cooling panels. The steady-state simulation was conducted with these three models and the DO radiation model. It is found that over 90% of the heat from the outer wall of the reactor pressure vessel is transported to the RCCS by radiative heat transfer. The simulation with the third model, which has the same pressure drop as the design, estimates the closest wall temperature profiles to a thermo-hydraulic code, GAMMA+, result.

Radiative Role of Clouds on the Earth Surface Energy Balance (지표 에너지 수지에 미치는 구름의 복사 역할)

  • Hong, Sung-Chul;Chung, Ii-Ung;Kim, Hyung-Jin;Lee, Jae-Bum;Oh, Sung-Nam
    • Journal of Environmental Science International
    • /
    • v.16 no.3
    • /
    • pp.261-267
    • /
    • 2007
  • In this study, the Slab Ocean Model (SOM) is coupled with an Atmospheric General Circulation Model (AGCM) which developed in University of Kangnung based on the land surface model of Biosphere-Atmosphere Transfer Scheme (BATS). The purposes of this study are to understand radiative role of clouds considering of the atmospheric feedback, and to compare the Clouds Radiative Forcing (CRF) come from the analyses using the clear-cloud sky method and CGCM. The new CGCM was integrated by using two sets of the clouds with radiative role (EXP-A) and without radiative role (EXP-B). Clouds in this two cases show the negative effect $-26.0\;Wm^{-2}$ of difference of radiation budget at top of atmosphere (TOA). The annual global means radiation budget of this simulation at TOA is larger than the estimations ($-17.0 Wm^{-2}$) came from Earth Radiation Budget Experiment (ERBE). The work showed the surface negative effect with $-18.6 Wm^{-2}$ in the two different simulations of CRF. Otherwise, sensible heat flux in the simulation shows a great contribution with positive forcing of $+24.4 Wm^{-2}$. It is found that cooling effect to the surface temperature due to radiative role of clouds is about $7.5^{\circ}C$. From this study it could make an accurate of the different CRF estimation considering either feedback of EXP-B or not EXP-A under clear-sky and cloud-sky conditions respectively at TOA. This result clearly shows its difference of CRF $-11.1 Wm^{-2}$.

THE DYNAMICS OF STELLAR WINDS: THEIR STRUCTURES AND [OIII] LINE FORMATION

  • CHA SEUNG-HOON;LEE YOUNG-JIN;CHOE SEUNG-URN
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.253-254
    • /
    • 1996
  • To understand the dynamical structures of stellar wind bubble, one and two-dimensional calculations has been performed. Using FCT Code with cooling effects and assuming constant mass loss rate and ambient medium density, we could divide stellar winds into the regime of slow and fast winds. The slow wind driven bubble shows initially radiative and becomes partially radiative bubble in which shocked stellar wind zone is still adiabatic. In contrast., the fast wind driven bubble shows initially fully adiabatic and becomes adiabatic bubbles with radiative outer shell. We also determine analytically the onset of thin-shell formation time in case of fast wind driven bubble with power-law energy injection and ambient density structure. We solve the line transfer problem with numerical results in order to calculate line profile of [OIII] forbidden line.

  • PDF

Flux-Limited Radiative Diffusion Module Applicable to Protoplanetary Disks

  • Yun, Han Gyeol;Kim, Woong-Tae;Bae, Jaehan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.70.3-70.3
    • /
    • 2020
  • Previous numerical simulations on planet-disk interactions revealed a lot of interesting phenomena including the planetary migration and the formation of many sub-structures inside the disks. However, these simulations were limited to an isothermal or adiabatic equation of state which does not account for various heating and cooling processes in the disks. Recent studies showed that the behavior of the planet-disk interaction can be significantly influenced by the disk thermodynamics. We develop a radiative diffusion module based on the two-temperature flux-limited diffusion approximation accounting for viscous heating and the accretion feedback. In this presentation, we describe our radiative diffusion solver, present some test results, and discuss potential applications of the module to planet-disk interactions,

  • PDF

Nocturnal Surface Cooling and Cold Air Transport Analysis Based on High Density Observation - A Case Study of Eunpyeong New Town in Seoul (고밀도 관측자료를 이용한 야간 지면냉각과 찬공기 이동 분석 - 서울 은평구 뉴타운 사례)

  • Yi, Chae-Yeon;Kim, Kyu-Rang;Choi, Young-Jean;Won, Hye-Young;Scherer, Dieter
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.124-137
    • /
    • 2012
  • Climate analysis is important in urban planning for human comfort. Synoptic weather conditions can only resolve the 30% of local variance of wind conditions whereas 70% of the variance arise from local terrain, buildings, and other small scale thermal conditions. Climate Analysis Seoul (CAS) was developed to resolve such micro-scale climate. The Local-scale air temperature Deviation (LD) analysis map from CAS showed the co-existence of built-up and suburban areas in the study region (CR, Cold-air analysis Region) despite its small extent. Temperature, humidity, wind speed, and wind direction were monitored in CR. Hourly observed cooling rate agreed well with LD. Cold air production, transportation, and stagnation was visualized by the observed Vertical Temperature Gradient (VTG) along the small stream in CR. VTG observed at the upper-most stream can be divided into two components: radiative cooling and cold air inflow from outside. Radiative cooling exists regardless of the wind speed whereas cold air inflow occurs only with calm wind. From the regression analyses based on the wind speed, the inflow portion was determined as 84% of radiative cooling. Climate analysis in the future will be able to characterize the changes in cold air by urban development plan to support the human comfort.

A Study on the Cooling Mechanism in Liquid Rocket Engine of 10tf-thrust Level using Kerosene as a Fuel (케로신을 연료로 하는 10톤급 액체로켓엔진의 냉각 기구에 관한 연구)

  • 한풍규;조원국;조용호
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.83-88
    • /
    • 2003
  • An analytical study was carried out to evaluate the regenerative cooling characteristics in the liquid rocket engine of a 10tf-thrust level using kerosene as a fuel. As a supplementary cooling method, a radiative cooling was applied to the nozzle extension. It was found out from this work that the cooling system with the regenerative and radiation cooling only is not adaptable as a cooling method for the liquid rocket engine of a 10tf-thrust level using kerosene as a fuel for the 2nd stage of the space launch vehicle. So, additional cooling method, curtain cooling was introduced and analyzed. Curtain cooling was very effective to reduce the thermal and thermo-structural instability.

  • PDF

Characteristics of Nocturnal Atmospheric Cooling on a Mountain Slope (산지 경사면의 야간 대기 냉각 특성)

  • 황규홍;이정택;허승오;심교문
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2001.06a
    • /
    • pp.68-71
    • /
    • 2001
  • 밝고 바람이 없는 저녁, 지표근처의 냉각은 많고 일출 전후에 최저기온이 나타난다(Nishiyama, 1985). 그리고 기온은 지표근처에서 가장 낮고 고도가 높아질수록 높아진다. 이러한 상태를 지표역전(surface inversion) 또는 지면역전(ground inversion)이라 한다. 지표 역전층은 지표근처에 강한 복사냉각(radiative cooling)에 의해 형성되고, 다른 하나는 차가운 공기의 drainage에 의해 이류(advection) 되어 지표근처에 축적된다.(중략)

  • PDF

Characteristics of Nocturnal Boundary Layer Observed in Kyungpook Province (경북지역에서 관측된 야간 대기경계층의 특성)

  • Byung-Hyuk Kwon
    • Journal of Environmental Science International
    • /
    • v.10 no.5
    • /
    • pp.329-336
    • /
    • 2001
  • Characgcteristics of nocturnal boundary layer(NBL) were analyzed by the upper-air observations data using with the airsonde and pilot balloons from 1994 to 1999 in Kyungpook province. The automate weather boundary layer can become stably stratified when the surface is cooler than the air. Stable nocturnal boundary layer height were estimated from the top of surface stable layer where the vertical gradient of temperature and mixing ratio tend to zero or negative. The depth of the stable nocturnal boundary layer depended largely on the thermal effect rather than the wind effect at nighttime. The NBL was more developed on the land than on the coastal region. The stability index (bulk Richardson number) showed that the NBL was stable when the wind was weak and the vertical gradient of the temperature was strong. The heat budget in the NBL was studied by considering the effect of the radiative and the cooled by both the longwave radiative flux and the divergence of the heat flux, while NBL under the cloudy sky the longwave radiative flux played a role of the warming. It was noted that the heat was not conserved in both cases. To complete the heat budget in the NBL the warming/cooling by advection and subsidence must be considered.

  • PDF