• Title/Summary/Keyword: Radiative Transfer

Search Result 590, Processing Time 0.022 seconds

Measurement and Modeling of Vegetation Loss in the Frequency Range of 1 $\sim$ 6 (1 $\sim$ 6 GHz대역 수풀손실 특성 측정 및 모델링)

  • Park, Yong-Ho;Jung, Myoung-Won;Han, Il-Tak;Pack, Jeong-Ki
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.163-168
    • /
    • 2005
  • Attenuation in vegetation is important, for both terrestrial and earth-space systems. However, the wide range of conditions and types of foliage makes it difficult to develop a generalized prediction procedure. Currently, there is also a lack of suitably prediction model and measured experimental data for vegetation loss. So in this paper, vegetation loss data for four different tree-species, including Dawn-redwood tree, Plane tree, Pine tree and Fir tree are obtained by measurement in the frequency range of 1.0 $\sim$ 6.0 GHz. The through or scattered component is calculated using a model based upon the theory of RET(Radiative Energy Transfer) and RET modeling parameters are extracted from the measured data.

  • PDF

Prediction of Combustion Characteristics in a 3D Model Combustor with Swirling Flow (스월이 있는 3차원 모델 연소기 내의 연소특성)

  • Kim, Man-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.95-104
    • /
    • 2003
  • The objective of this work is to investigate the turbulent reacting flow in a three dimensional combustor with emphasis on thermal NO emission through a numerical simulation. Flow field is analyzed using the SIMPLE method which is known as stable as well as accurate in the combustion modeling, and the finite volume method is adopted in solving the radiative transfer equation. In this work, the thermal characteristics and NO emission in a three dimensional combustor by changing parameters such as equivalence ratio and inlet swirl angle have investigated. As the equivalence ratio increases, which means that more fuel is supplied due to a larger inlet fuel velocity, the flame temperature increases and the location of maximum temperature and thermal NO has moved towards downstream. In the mean while, the existence of inlet swirl velocity makes the fuel and combustion air more completely mixed and burnt in short distance. Therefore, the locations of the maximum reaction rate, temperature and thermal NO were shifted to forward direction compared with the case of no swirl.

A Study on Inverse Radiation Analysis using RPSO Algorithm (RPSO 알고리즘을 이용한 역복사 해석에 관한 연구)

  • Lee, Kyun-Ho;Kim, Ki-Wan;Kim, Man-Young;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.7 s.262
    • /
    • pp.635-643
    • /
    • 2007
  • An inverse radiation analysis is presented for the estimation of the radiation properties for an absorbing, emitting, and scattering media with diffusely emitting and reflecting opaque boundaries. In this study, a repulsive particle swarm optimization(RPSO) algorithm which is a relatively recent heuristic search method is proposed as an effective method for improving the search efficiency for unknown parameters. To verify the performance of the proposed RPSO algorithm, it is compared with a basic particle swarm optimization(PSO) algorithm and a hybrid genetic algorithm(HGA) for the inverse radiation problem with estimating the various radiation properties in a two-dimensional irregular medium when the measured temperatures are given at only four data positions. A finite-volume method is applied to solve the radiative transfer equation of a direct problem to obtain measured temperatures.

Drying Characteristics of Red Peppers by Infrared Heating (원적외선 가열에 의한 고추의 건조특성)

  • Bae, Nae Kyung;Lee, Jong Bung;Sang, Hie Sun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.1
    • /
    • pp.65-71
    • /
    • 2003
  • Infrared heating has been traditionally used in industrial applications for processes such as dehydration of food industrial. This heating method involves the application of radiation in the wavelength range of 5~50 micrometers. In this work, simultaneous heat balance equations were developed to simulate the infrared radiation heating of red peppers. The equations assume that moisture diffuses to the outer boundaries of the material in liquid form and evaporation occurs at the surface of the red peppers. Energy for moisture evaporation is supplied by the infrared radiant energy. The equations were validated with experimental data on surface temperature and average moisture content of red peppers. Average deviations of predicted surface red peppers temperature and average red peppers moisture from experimental data were 323~353K and 50~80%, respectively. The spectral extinction coefficients in the wavelength range $1.5<{\lambda}<27$ micrometer at 293K for Red Peppers were determined from results of reflection measurements and the four flux radiative heat transfer calculation. The radiation extinction coefficients were obtained from effective drying factor the temperature 373K.

  • PDF

Study on Regrouping of Gray Gases in spectral WSGGM for Arbitrary Mixtures of CO2 and H2O Gases (이산화탄소-수증기 혼합가스에 대한 파장별 회색가스가중합법에서 회색가스재조합에 대한 연구)

  • Park, Won-Hee;Kim, Tae-Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.227-235
    • /
    • 2003
  • The WSGG-based narrow band model was employed to solve the radiative transfer equations along isothermal and non-isothermal paths through $CO_2-H_2O-N_2$ gas mixtures at 1 atm. When the WSGGM is applied for arbitrary gas mixtures by considering the multiplication property of transmissivity in overlapping bands, the number of gray gases is significantly increased. To reduce the computation time, three different regrouping methods for the gray gases are tested in obtaining the mean absorption coefficient for each gray gas group. Among them, the regrouping method by minimizing the regrouping error shows the best results. For the isothermal media, 10 gray gases show fairly good agreement with the results by statistical narrow band(SNB) model which are regarded as reference solutions. For non-isothermal media, 20 gray gases show good agreement with reference solutions.

Analysis on the Relations of Droplet Size Distribution and Optical Depth in Water Curtain (워터커튼에서 액적의 크기 분포와 광학 두께의 상관관계 분석)

  • You, Woo Jun;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.62-67
    • /
    • 2016
  • In this study, the optical depth is analyzed with the effects of droplet size distribution of the water curtain nozzle to attenuate the radiative heat transfer. The HELOS/VARIO equipment is used for the measurement of the droplet size distributions. The spray characteristics are quantified by the investigation of Deirmenjian's modified gamma distribution function. The distribution constant of the nozzle can be obtained as ${\alpha}=1$ and ${\gamma}=5.2$. The generalized equation of the optical depth related with the droplet size distribution is introduced. These results will be applicable to the analysis of the design condition of the water curtain nozzle.

Radiometric Characteristics of Geostationary Ocean Color Imager (GOCI) for Land Applications

  • Lee, Kyu-Sung;Park, Sung-Min;Kim, Sun-Hwa;Lee, Hwa-Seon;Shin, Jung-Il
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.3
    • /
    • pp.277-285
    • /
    • 2012
  • The GOCI imagery can be an effective alternative to monitor short-term changes over terrestrial environments. This study aimed to assess the radiometric characteristics of the GOCI multispectral imagery for land applications. As an initial approach, we compared GOCI at-sensor radiance with MODIS data obtained simultaneously. Dynamic range of GOCI radiance was larger than MODIS over land area. Further, the at-sensor radiance over various land surface targets were tested by vicarious calibration. Surface reflectance were directly measured in field using a portable spectrometer and indirectly derived from the atmospherically corrected MODIS product over relatively homogeneous sites of desert, tidal flat, bare soil, and fallow crop fields. The GOCI radiance values were then simulated by radiative transfer model (6S). In overall, simulated radiance were very similar to the actual radiance extracted from GOCI data. Normalized difference vegetation index (NDVI) calculated from the GOCI bands 5 and 8 shows very close relationship with MODIS NDVI. In this study, the GOCI imagery has shown appropriate radiometric quality to be used for various land applications. Further works are needed to derive surface reflectance over land area after atmospheric correction.

INTRODUCTION TO THE COMS METEOROLOGICAL DATA PROCESSING SYSTEM

  • Ahn Myoung-Hwan;Seo Eun-Jin;Chung Chu-Yong;Sohn Byung-Ju;Suh Myoung-Seok;Oh Milim
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.95-97
    • /
    • 2005
  • Communication, Ocean, and Meteorological Satellite (COMS) to be launched in year 2008 will be the first Korean multi-purpose geostationary satellite aiming at three major missions, i.e.: communication, ocean, and meteorological applications. The development of systems for the meteorological mission sponsored by the Korea Meteorological Administration (KMA) consists of payloads, ground system, and data processing system. The program called COMS Meteorological Data Processing System (CMDPS) has been initiated for the development of data processing system. The primary objective ofCMDPS is to derive the level-2 environmental products from geo-Iocated and calibrated level 1.5 COMS data. Preliminary design for the level-2 data processing system consists of 16 baseline products and will be refined by end of 3rd project year. Also considered for the development are the necessary initial information such as land use and digital elevation map, algorithms for the vicarious calibration and procedures for the calibration monitoring, and radiative transfer model. Here, we briefly introduce the overall development strategy, flow chart for the intended baseline products, a few preliminary algorithm results and future plans.

  • PDF

In-orbit performance prediction for Amon-Ra energy channel instrument

  • Seong, Se-Hyun;Hong, Jin-Suk;Ryu, Dong-Ok;Kim, Sug-Whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.30.2-30.2
    • /
    • 2011
  • In this report, we present in-orbit radiometric performance prediction for the Amon-Ra (Albedo Monitor and Radiometer) energy channel instrument. The Integrated Ray Tracing (IRT) computational technique uses the ray sets arriving at the Amon-Ra instrument aperture orbiting around the L1 halo orbit. Using this, the variation of flux arriving at the energy channel detector was obtained when the Amon-Ra instrument including the energy channel design observes the Sun and Earth alternately. The flux detectability was verified at the energy channel detector (LME-500-A, InfraTecTM). The detector time response and RMS signal voltage were then derived from the simulated flux variation results. The computation results demonstrate that the designed energy channel optical system satisfies the in-orbit detectability requirement. The technical details of energy channel instrument design, IRT model construction, radiative transfer simulation and output signal computation results are presented together with future development plan.

  • PDF

Ignition of a Vertically Positioned Fuel Plate by Thermal Radiation (열복사에 의한 수직연료면의 점화현상 해석)

  • 한조영;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2353-2364
    • /
    • 1995
  • The ignition phenomena of a solid fuel plate of polymethyl-methacrylate(PMMA), which is vertically positioned and exposed to a thermal radiation source, is numerically studied here. A two-dimensional transient model includes such various aspects as thermal decomposition of PMMA, gas phase radiation absorption, gas phase chemical reaction and air entrainment by natural convection. Whereas the previous studies considers the problem approximately in a one-dimensional form by neglecting the natural convection, the present model takes account of the two-dimensional effect of radiation and air entrainment. The inert heating of the solid fuel is also taken into consideration. Radiative heat transfer is incorporated by th Discrete Ordinates Method(DOM) with the absorption coefficient evaluated using gas species concentration. The thermal history of the solid fuel plate shows a good agreement compared with experimental results. Despite of induced natural convective flow that induces heat loss from the fuel surface, the locally absorbed radiant energy, which is converted to the internal energy, is found to play an important role in the onset of gas phase ignition. The ignition is considered to occur when the rate of variation of gas phase reaction rate reaches its maximum value. Once the ignition takes place, the flame propagates downward.