• Title/Summary/Keyword: Radiative Transfer

Search Result 587, Processing Time 0.034 seconds

Soil Moisture Content Estimation Using Remote Sensing Technique (원격 측정 기법을 이용한 토양 함수비의 측정)

  • Lee, Jae Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.535-542
    • /
    • 1994
  • Remote sensing technique is based on the estimation of land surface characteristics from the measurement of the emitted radiation from the earth. The hydrologically related parameters studied using this approach include surface temperature, evapotranspiration, soil moisture, precipitation and snow. This study introduces a method for estimating moisture content of a bare soil from the observed and simulated brightness temperature. In a bare soil, microwave emission depends on moisture content, soil temperature, and surface roughness. The method is based on a radiative transfer model with some modifications of Fresnel reflection coefficient to take into account the effect of surface roughness. One smooth bare field and two fields with different surface roughness are prepared for the study. The results indicate that the effect of surface roughness is to increase the soil's brightness temperature and to reduce the slope of regression between brightness temperature and moisture contents.

  • PDF

Radiation-Laminar Free Convection in a Square Duct with Specular Reflection by Absorbing-Emitting Medium

  • Byun, Ki-Hong;Im, Moon-Hyuk
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1346-1354
    • /
    • 2002
  • The purpose of this work is to study the effects of specularly reflecting wall under the combined radiative and laminar free convective heat transfer in an infinite square duct. An absorbing and emitting gray medium is enclosed by the opaque and diffusely emitting walls. The walls may reflect diffusely or specularly. Boussinesq approximation is used for the buoyancy term. The radiative heat transfer is evaluated using the direct discrete ordinates method. The parameters under considerations are Rayleigh number, conduction to radiation parameter, optical thickness, wall emissivity and reflection mode. The differences caused by the reflection mode on the stream line, and temperature distribution and wall heat fluxes are studied. Some differences are observed for the categories mentioned above if the order of the conduction to radiation parameter is less than order of 10$\^$-3/ fer the range of Rayleigh number studied. The differences at the side wall heat flux distributions are observed as long as the medium is optically thin. As the top wall emissivity decreases, the differences between these two modes are increased. As the optical thickness decreases at the fixed wall emissivity, the differences also increase. The difference of the streamlines or the temperature contours is not as distinct as the side wall heat flux distributions. The specular reflection may alter the fluid motion.

RETRIEVING AEROSOL AMOUNT FROM GEOSTATIONARY SATELLITE

  • Yoon, Jong-Min;Kim, Jhoon
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.232-235
    • /
    • 2006
  • Using 30 days of hourly visible channel data and DIScrete Ordinate Radiative Transfer (DISORT) model (6S), Aerosol optical depth (AOD) at $0.55{\mu}m$ was retrieved over the East Asia. In contrast with the AOD retrieval using low-earth-orbit satellites such as MODIS (Moderate-Res olution Spectroradiometer) or MISR (Multiangle Imaging SpectroRadiometer), this algorithm with geostationary satellite can improve the monitoring of AOD without the limitation of temporal resolution. Due to the limited number of channels in the conventional meteorological imager onboard the geostationary satellite, an AOD retrieval algorithm utilizing a single visible channel has been introduced. This single channel algorithm has larger retrieval error of AOD than other multiple-channel algorithm due to errors in surface reflectance and atmospheric property. In this study, the effects of manifold atmospheric and surface properties on the retrieval of AOD from the geostationary satellite, are investigated and compared with the AODs from AERONET and MODIS. To improve the accuracy of retrieved AOD, efforts were put together to minimize uncertainties through extensive sensitivity tests. This algorithm can be utilized to retrieve aerosol information from previous geostationary satellite for long-term climate studies.

  • PDF

RETRIEVAL OF LAND SURFACE TEMPERATURE FROM MTSAT-1R

  • Kwak, Seo-Youn;Suh, Myoung-Seok;Kang, Jeon-Ho;Kwak, Chong-Heum;Kim, Chan-Soo
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.250-252
    • /
    • 2006
  • The land surface temperature (LST) can be defined as a weighted average temperature of components which constitute a pixel. The coefficients of split-window algorithm for MTSAT-1R were obtained by means of a statistical regression analysis from radiative transfer simulations using MODTRAN 4.0 for a wide range of atmospheric, satellite viewing angle (SVA) and lapse rate conditions. 6 types of atmospheric profile data imbedded in the MODTRAN 4 are used for the radiative transfer simulations. The RMSE is clearly larger on warm and humid profiles than cold and dry profiles, especially when the satellite viewing angle and lapse rate are large. The derivation of LST equations according to the atmospheric profiles clearly decreased the RMSE without regard to the SVA and lapse rate. The bias and RMSE are decreased as the more controls factors included. This preliminary result indicates that the characteristics of atmosphere, SVA and lapse rate should be included in the LST equation.

  • PDF

FORMATION OF LINE PROFILES BY THE WINDS OF EARLY TYPE STARS

  • KANG IVIIN-YOUNG;KIM KYUNG-MEE;CHOE SEUNG-URN
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.263-264
    • /
    • 1996
  • We have solved the radiative transfer problem using a Sobolev approximation with an escape probability method in case of the supersonic expansion of a stellar envelope to an ambient medium. The radiation from the expanding envelope turns out to produce a P-Cygni type profile. In order to investigate the morphology of the theoretical P-Cygni type profile, we have treated $V{\infty},\;V_{sto},\;{\beta}$ (parameter for the velocity field), M and $\epsilon$ (parameter for collisional effect) as model parametrs. We have found that the velocity field and the mass loss rate affect the shapes of the P-Cygni type profiles most effectively. The secondarily important factors are $V{\infty},\;V_{sto}$. The collisional effect tends to make the total flux increase but not so .much in magnitude. We have infered some physical parameters of 68 Cyg, HD24912, and $\xi$ persei such as V$\infty$, M from the model calculation, which shows a good agreement with the observational results.

  • PDF

Lyα Radiative Transfer and The Wouthuysen-Field effect

  • Seon, Kwang-Il;Kim, Chang-Goo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.43.1-43.1
    • /
    • 2017
  • A three-dimensional (3D) $Ly{\alpha}$ radiative transfer code is developed to study the Wouthuysen-Field effect, which couples the 21 cm spin temperature of neutral hydrogen and the $Ly{\alpha}$ radiation field, and the escape fraction of $Ly{\alpha}$ from galaxies. The Monte Carlo code is capable of treating arbitrary 3D distributions of $Ly{\alpha}$ source, neutral hydrogen and dust densities, gas temperature, and velocity field. It is demonstrated that the resonance-line profile at the center approaches to the Boltzmann distribution with the gas temperature. A plane-parallel ISM model, which is appropriate for the neutral ISM of our Galaxy, is used to calculate the $Ly{\alpha}$ radiation field strength as a function of height above the galactic plane. We also use a two-phase, clumpy medium model which is composed of the cold and warm neutral media (WNM). It is found that the $Ly{\alpha}$ radiation field is strong enough to thermalize the 21 cm spin temperature in the WNM to the gas kinetic temperature. The escape fraction of $Ly{\alpha}$ is found to be a few percent, which is consistent with the $Ly{\alpha}$ observations of our Galaxy and external galaxies.

  • PDF

TEMPORAL VARIATIONS OF URBAN HEAT ISLAND USING LAND SURFACE TEMPERATURE DERIVED FROM MTSAT-1R

  • Hong, Ki-Ok;Suh, Myoung-Seok;Kang, Jeon-Ho;Kwak, Chong-Heum;Kim, Chan-Soo
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.290-293
    • /
    • 2007
  • The land surface temperature (LST) derived from the meteorological satellite can be used to investigate the urban heat island (UHI) and its temporal variations. In this study, we developed LST retrieval algorithm from MTSAT-1R by means of a statistical regression analysis from radiative transfer simulations using MODTRAN 4 for a wide range of atmospheric, satellite viewing angle (SVA) and lapse rate conditions. 535 sets of thermodynamic initial guess retrieval (TIGR) were used for the radiative transfer simulations. Sensitivity and intercomparison results showed that the algorithm, developed in this study, estimated the LST with a similar bias and root mean square errors to that of other algorithms. The magnitude, spatial extent, and seasonal and diurnal variations of the UBI of Korean peninsula were well demonstrated by the LST derived from MTSAT-1R data. In general, the temporal variations of UHI clearly depend on the weather conditions and geographic environment of urban.

  • PDF

INTENSIVE OBSERVATION OF SAND AND DUST STORMS USING GROUND-BASED FOURIER TRANSFORM INFRARED SPECTROSCOPY IN ANMYEON, KOREA

  • Lee, Byung-Il;Kim, Yoon-Jae;Sohn, Eun-Ha;Kim, Mee-Ja;Lee, Kwang-Mog;Park, Joong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.142-145
    • /
    • 2007
  • In order to analyze hyper-spectral properties of Sand and Dust Storm (SDS), dust observation experiment has been performed at the Korea Global Atmosphere Watch Center (KGAW) in Anmyeon form early March to middle of May, 2007. We measured down-welling radiances by using ground-based Fourier Transform Infrared Spectroscopy (FT-IR) at the time of overpass of AIRS. And radiative transfer model simulation has been carried out to estimate the effects of size distribution, components, and altitude of SDS over the high resolution infrared spectrum in the range of 500-1500 $cm^{-1}$ with a line-by-line radiative transfer model and compared them with FT-IR and AIRS/Aqua observing data.

  • PDF

The Premixed Flame in a Radiatively Active Porous Medium (복사열전달을 동반하는 다공성 매질내의 예혼합 화염)

  • 김정수;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.265-270
    • /
    • 1989
  • The present study considers the thermal structure variation in a porous medium caused by changing the most important radiative property of porous medium, absorption coefficient, as well as altering the physical dimension of porous medium and the equivalence ratio of premixed gas mixture. The radiation model was introduced as an unsteady differential form using the two-flux gray radiation model. The role of the conductive heat transfer through both gas phase and porous medium was found to be almost insignificant compared with that of the radiative heat transfer. The reaction zone shifted upstream and the flame thickness decreased as either the geometrical length of porous medium increased or the absorption coefficient decreased.

Non-gray Radiation in the Entrance Region of a Smooth Tube (평편한 튜브의 입구 영역에서의 비회복사)

  • Seo, Tae-Beom
    • Solar Energy
    • /
    • v.15 no.3
    • /
    • pp.91-103
    • /
    • 1995
  • Non-gray radiation with convection in the entrance region of a smooth tube is numerically investigated. The fluid is a mixture of carbon dioxide, water vapor, and nitrogen to simulate combustion products of propane. The flow is assumed to be laminar and hydrodynamically and thermally developing. The P-1 approximation is used to simplify the radiative transfer equation and the exponential wide band model is adapted to model the spectral absorption coefficients of non-gray gas mixture. The bulk mean temperature and Nusselt number variation along the tube axis are shown for several inlet and wall temperature pairs to show the effect of temperature on the heat transfer characteristics. Nusselt numbers for simultaneously developing flow are compared to those for thermally developing flow. In addition, the effect of the mole fraction of the non-gray gases on convective and radiative Nusselt numbers is investigated.

  • PDF