• Title/Summary/Keyword: Radiation-hardening technology

Search Result 23, Processing Time 0.023 seconds

Reliability Evaluation of ACP Component under a Radiation Environment (방사선환경에서 ACP 주요부품의 신뢰도 평가)

  • Lee, Hyo-Jik;Yoon, Kwang-Ho;Lim, Kwang-Mook;Park, Byung-Suk;Yoon, Ji-Sup
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.4
    • /
    • pp.309-322
    • /
    • 2007
  • This study deals with the irradiation effects on some selected components which are being used in an Advanced Spent Fuel Conditioning Process (ACP). Irradiation test components have a higher priority from the aspect of their reliability because their degradation or failure is able to critically affect the performance of an ACP equipment. Components that we chose for the irradiation tests were the AC servo motor, potentiometer, thermocouples, accelerometer and CCD camera. ACP facility has a number of AC servo motors to move the joints of a manipulator and to operate process equipment. Potentiometers are used for a measurement of several joint angles in a manipulator. Thermocouples are used for a temperature measurement in an electrolytic reduction reactor, a vol-oxidation reactor and a molten salt transfer line. An accelerometer is installed in a slitting machine to forecast an incipient failure during a slitting process. A small CCD camera is used for an in-situ vision monitoring between ACP campaigns. We made use of a gamma-irradiation facility with cobalt-60 source for an irradiation test on the above components because gamma rays from among various radioactive rays are the most significant for electric, electronic and robotic components. Irradiation tests were carried out for enough long time for total doses to be over expected threshold values. Other components except the CCD camera showed a very high radiation hardening characteristic. Characteristic changes at different total doses were investigated and threshold values to warrant at least their performance without a deterioration were evaluated as a result of the irradiation tests.

  • PDF

Evaluation of the Effect of Metal Artifacts Varying the Parameters of the Attenuation Map for the artificial Hip Joint in SPECT/CT (SPECT/CT에서 인공고관절에 대한 감쇠보정지도(Attenuation Map)의 매개변수 변화에 따른 금속 인공물(Metal Artifact)의 영향 평가)

  • Kim, Sang Gyu;Kim, Jung Yul;Park, Min Soo;Jo, Seung Hyun;Lim, Han Sang;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.3-7
    • /
    • 2014
  • Purpose SPECT/CT scan to be performed attenuation correction on the basis of CT induce an overestimation of the site due to the beam hardening artifact by metal cover and reduce the images quality. Therefore, this study using a phantom that has been inserted artificial hip joint investigated that effect on the SPECT/CT image causing by metal artifact for varying the parameters of the Attenuation Map. Materials and Methods Siemens Symbia T16 SPECT/CT equipment was used. Artificial hip joint was inserted to SPECT/PET phantom, 17 mm sphere of Bright Streak area in CT image was filled with Tc-99m so that the radiation activity was 8 times compared to background. And then Hot and Background was measured in varying Wide Beam Coefficient on Attenuation Map and RBR (Region to Background Ratio) of Metal and Non-Metal was calculated and analyzed depending on the presence or absence of the hip joint. Results It tended to hot count of Non-Metal and Metal to increase as the value of the manual mode is increased, hot count ratio with the group of both manual mode 0.5 and 0.4 is the best match. Also, in automatic mode, the ratio of RBRNon-Metal and RBRMetal was 1.135, statistically significant difference was not observed in the manual mode 0.5 and 0.4. Conclusion In the automatic mode of Wide Beam Coefficient in attenuation correction map, it was found that it is over-correction by 13.52%, it was possible to minimize the over-correction by the artifact in 0.5 and 0.4 of manual mode. Further studies should be performed in order to apply to a patient with the help of this and it is considered possible to reduce the over-correction by the metal artifact of an artificial hip joint for Hip-Resurfacing Arthroplasty patients, and to improve the diagnostic performance.

  • PDF

A Comparative Study on the CT Effective Dose by the Position of Patient's Arm (전신 PET/CT 검사에서 환자의 팔 위치에 따른 CT 유효선량의 비교 연구)

  • Seong, Ji-Hye;Park, Soon-Ki;Kim, Jung-Sun;Park, Seung-Yong;Jung, Woo-Young
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.44-49
    • /
    • 2012
  • Purpose: In the whole body PET/CT scan, it is natural to lift the patient's arm for its quality improvement. However, when the lesion is located in head and neck, the arms should be located lower. This study was designed to compare the CT effective dose for each arm position applying Automatic Exposure Control (AEC). Materials and Methods: 45 patients who had $^{18}F$-FDG whole body PET/CT scan were studied with Biograph Truepoint 40 (SIEMENS, GERMANY), Biograph Sensation 16 (SIEMENS, GERMANY), Discovery STe 8 (GE healthcare, USA). The CT effective dose of 15 patients for each equipment was measured and comparatively analyzed in both arm-lifted position and lower-arm position. ImPACT v1.0 program was used as the method of measurement for CT effective dose. For the statistics analysis, Paired t-test which paired with SPSS 18.0 statistic program was applied. Results: In the case of arm-lifted, it was measured as $6.33{\pm}0.93mSv$ for Biograph Sensation 16, $8.01{\pm}1.34mSv$ for Biograph Truepoint 40, and $9.69{\pm}2.32mSv$ for Discovery STe 8. When arms are located lower position, it was measure as $6.97{\pm}0.76mSv$, $8.95{\pm}1.85mSv$, $13.07{\pm}2.87mSv$ for each. CT effective dose according to the arm position was 9.2% for Biograph Truepoint 40, 10.5% for Biograph Sensation 16, and 25.9% for Discovery Ste 8. The statistics analysis showed the meaningful difference ($p$<0.05). Conclusion: For the whole body PET/CT case, CT effective dose applying AEC was decreased the radiation exposure of the patients when the arm was lifted for 15.2% of average value. The patient who has no lesion in head and neck would decrease the artifact occurrence in objective part and lower the CT effective dose. Also, for the patient who had lesion in head and neck, the artifact in objective part can be lower by putting the arms down, the fact that CT effective dose increases should be concerned in its whole body PET/CT scan.

  • PDF