• Title/Summary/Keyword: Radiation pressure

Search Result 681, Processing Time 0.025 seconds

Precision GPS Orbit Determination and Analysis of Error Characteristics (정밀 GPS 위성궤도 결정 및 오차 특성 분석)

  • Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.4
    • /
    • pp.437-444
    • /
    • 2009
  • A bi-directional, multi-step numerical integrator is developed to determine the GPS (Global Positioning System) orbit based on a dynamic approach, which shows micrometer-level accuracy at GPS altitude. The acceleration due to the planets other than the Moon and the Sun is so small that it is replaced by the empirical forces in the Solar Radiation Pressure (SRP) model. The satellite orbit parameters are estimated with the least-squares adjustment method using both the integrated orbit and the published IGS (International GNSS Service) precise orbit. For this estimation procedure, the integration should be applied to the partial derivatives of the acceleration with respect to the unknown parameters as well as the acceleration itself. The accuracy of the satellite orbit is evaluated by the RMS (Root Mean Squares error) of the residuals calculated from the estimated orbit parameters. The overall RMS of orbit error during March 2009 was 5.2 mm, and there are no specific patterns in the absolute orbit error depending on the satellite types and the directions of coordinate frame. The SRP model used in this study includes only the direct and once-per-revolution terms. Therefore there is errant behavior regarding twice-per-revolution, which needs further investigation.

Analyses of Transpiration and Growth of Paprika (Capsicum annuum L.) as Affected by Moisture Content of Growing Medium in Rockwool Culture

  • Tai, Nguyen Huy;Park, Jong Seok;Shin, Jong Hwa;Ahn, Tae In;Son, Jung Eek
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.340-345
    • /
    • 2014
  • Since the moisture content (MC) of growing medium closely related with the crop transpiration, the MC should be included to the environmental factors to be considered for irrigation control in soilless culture. The objective of this study was to analyze the transpiration of paprika plants using daily mean solar radiation (RAD) and vapor pressure deficit (VPD) as well as the growth of the plants at different MCs of rockwool growing media. The starting points of irrigation were controlled by a moisture sensor with minimum set points of 40%, 50%, and 60% of MCs. The canopy transpirations were measured for 80 to 120 days after transplanting and analyzed. The transpirations were well regressed with a combination of both RAD and VPD rather than daily mean RAD only under the controlled MCs. The transpiration at 60% MC was higher than those at 50% and 40% MCs. Leaf area, leaf fresh and dry weights at 60% MC were higher than those at 50% and 40% MCs while the number of leaves had no significant difference among the MCs. There were no significant differences in number of fruits and fruit size among all the MCs, while fruit weight was significantly lower at 40% MC than other treatments. Fresh and dry fruit yields were the highest at 60% MC. Therefore it was concluded that the transpiration was affected by the MC of rockwool growing medium and the minimum set point of 50-60% MC of rockwool growing medium gave better effects on the growth of the paprika plants.

Effect of Ethanol Extracts of Raw and Boiled Bracken on Blood Pressure in Cats (고사리 (Pteridium aquilinum) Ethanol 추출액(抽出液)에 의한 혈압강하작용(血壓降下作用))

  • Koh, Sang-Don;Kim, Kee-Soon
    • The Korean Journal of Physiology
    • /
    • v.18 no.2
    • /
    • pp.171-180
    • /
    • 1984
  • The death of cattle from acute bracken poisoning has been recognized for many years. Acute bracken poisoning is characterized by mucoidal nasal and anal hemorrhage, severe anorexia. pyrexia, gastric ulcer and myocardial damage. In 1958 Evans first suggested that clinical picture of bracken poisoning was very much similar to that of radiation injuries such as aplastic anemia, leucopenia, thrombocytopenia and increased capillary fragility. Bracken has been clearly demonstrated to contain a carcinogen as well as thiaminase. However, the nature of carcinogen in bracken has not definetely elucidated. Also it was warned by several workers that bracken could be a causative factor for stomach cancer in Korean and Japanese. It appears that little is known on the e(feet of bracken on the function of cardiovascular system. Therefore the present study was designed to explore effects of ethanol extract of raw and toiled bracken (RBEE:BBEE) on blood pressure in cats. Also studied was the mechanism underlying changed in blood pressure of cats by bracken. The result obtained were as follows; 1) Mean arterial blood pressure was invariably decreased following administration of either RBEE or BBEE. Tn general depressor responses to RBEE persisted longer than that to BBEE. Generally, depressor responses were proportional to debases of RBEE and BBEE administered. 2) After administration of 60 mg/kg RBEB and BBEE, blood Pressure decreased by $62.1{\pm}1.7mmHg$ and $68.0{\pm}3.0mmHg$, respectively. No change was observed between depressor responses to RBEE and that to BBEE. 3) Depressor responses to BBEE and RBEE were not affected by vagotomy, propranolol and regitine. 4) In atropinized animal depressor responses to BBEE and RBEE were reduced by 30-40% showing part of depressor response was resulted from cholinergic effect of bracken.

  • PDF

A Study for Development of a Korean Pain Measurement Tool(II). A Study for Testing Ranks of Words in each Subclass of a Korean Pain Measurement Tool (동통 평가도구 개발을 위한 연구 -한국 통증 어휘별 강도 순위의 유의도 및 신뢰도 검사-)

  • 이은옥;송미순
    • Journal of Korean Academy of Nursing
    • /
    • v.13 no.3
    • /
    • pp.106-118
    • /
    • 1983
  • The main purpose of this study is to systematically classify words indicating pain in terms of their ranks in each subclass. This study is a part of developing a Korean Pain Measurement Tool. This study didnot include exploration of each word's dimension such as sensory or affective. Eighty three Korean words tentatively classified in 19 subclasses in previous study were used for this study. At least three to six words were included in each subclass and the words were randomly placed in which each subject indicates their rank of pain degree. One hundred and fifty nursing students and one hundred clinical nurses were requested to indicate the rank of each word. One hundred and sixteen students and eighty three nurses completed the ratings for analysis. The data were collected from June 1983 to July 1983. The data using ordinal scale were analyzed by Friedman ANOVA to test significant difference between rank means. All of pain words indicated significant rank mean difference in all of 19 subclasses. Some of the words were either cancelled or replaced by other words, or rearranged for their ranks. Subclasses of which words were cancelled were 1) Simple stimulating pain, 2) Punctuate pressure, 3) peripheral nerve pain, 4) radiation pain, 5) punishment-related pain, and 6) suffering-related pain. Subclasses of which words were replaced or rearranged were 1) incisive pressure, 2) constrictive pressure, 3) dull pain, 4) tract pain, 5) digestion-related pain and 6) fear-related pain. Four subclasses such as traction pressure, thermal, cavity pressure, and fatigue- elated pain indicated significant differences among rank means in each subclasses and showed no visible overlaps of the ranks among means. Further research is needed using high level measurement of pain degree of each word and more sophisticated analysis of the pain degrees. Three pain words which would be related to chemical stimulation were newly explored and included as a new subclass. Through this study, the total number of subclasses increases from 19 to 20 and the total number of Korean words in the scale decreases from 83 to 80.

  • PDF

PAUT-based defect detection method for submarine pressure hulls

  • Jung, Min-jae;Park, Byeong-cheol;Bae, Jeong-hoon;Shin, Sung-chul
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.2
    • /
    • pp.153-169
    • /
    • 2018
  • A submarine has a pressure hull that can withstand high hydraulic pressure and therefore, requires the use of highly advanced shipbuilding technology. When producing a pressure hull, periodic inspection, repair, and maintenance are conducted to maintain its soundness. Of the maintenance methods, Non-Destructive Testing (NDT) is the most effective, because it does not damage the target but sustains its original form and function while inspecting internal and external defects. The NDT process to detect defects in the welded parts of the submarine is applied through Magnetic particle Testing (MT) to detect surface defects and Ultrasonic Testing (UT) and Radiography Testing (RT) to detect internal defects. In comparison with RT, UT encounters difficulties in distinguishing the types of defects, can yield different results depending on the skills of the inspector, and stores no inspection record. At the same time, the use of RT gives rise to issues related to worker safety due to radiation exposure. RT is also difficult to apply from the perspectives of the manufacturing of the submarine and economic feasibility. Therefore, in this study, the Phased Array Ultrasonic Testing (PAUT) method was applied to propose an inspection method that can address the above disadvantages by designing a probe to enhance the precision of detection of hull defects and the reliability of calculations of defect size.

Effects of Supplemental Lighting of High Pressure Sodium and Lighting Emitting Plasma on Growth and Productivity of Paprika during Low Radiation Period of Winter Season (겨울철 약광기 파프리카의 생육 및 생산성에 대한 고압나트륨 및 Lighting Emitting Plasma 램프의 보광 효과)

  • Lee, Jong-Won;Kim, Ho Cheol;Jeong, Pyeong Hwa;Ku, Yang-Gyu;Bae, Jong Hyang
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.346-352
    • /
    • 2014
  • This research was carried out to investigate the effect of supplemental lighting on stable productivity of paprika (Capsicum annuum L.) during low radiation period of winter season. The supplemental lighting sources used in this research were high pressure sodium (HPS) and lighting emitting plasma (LEP). Photosynthetic photon flux density (PPFD) emitted from both lamps decreased as vertical distance from lamp increased. The PPFD of LEP lamps were twice more than that of the HPS lamp per unit distance, but the rate of decreased PPFD of t he LEP per unit distance was higher than that of HPS lamp. And different degrees of PPFD between HPS and LEP lamps by horizontal distance had a smaller degree of difference than by vertical distance at the 100 cm away point. As daily average PPFD measured at the top of the plant under the supplemental lighting during January, the supplemental lighting significantly increased radiation. Radiation of HPS and LEP lighting was 137% and 315% higher than control (without supplemental lighting = sunlight). Air temperature in the top of the plant was not significant different among treatments. HPS and LEP lighting had no effect on increase of flower settings. Leaf length and width with LEP lighting was the longest, photosynthetic was higher than those of other treatments. Supplemental lighting treatments significant increased fruit length and diameter. Especially LEP lighting treatment had a greater effect on fruit length and diameter. In conclusion, LEP lighting treatment during low radiation period greatly affected growth and production of paprika. Further research will be required for the suitable application of LEP lighting in paprika production.

Selection of Supplemental Light Source for Greenhouse Cultivation of Pepper during Low Radiation Period through Growth and Economic Analysis (생육 및 경제성 분석을 통한 약광기 고추의 온실재배를 위한 적정 보광 광원 선정)

  • Hwang, Hee Sung;Lee, Kwang Hui;Jeong, Hyeon Woo;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.204-211
    • /
    • 2022
  • To produce a high quality crop, light is an essential environmental factor in greenhouse cultivation. In the winter season, solar radiation is weak than other season. Therefore, using supplemental light during a low radiation period can increase the crop growth and yield. This study was conducted to select the economical supplemental light source for greenhouse cultivation in pepper during the low radiation period. The green pepper (Capsicum annuum 'Super Cheongyang') was transplanted on 5 September 2019. Supplemental lighting treatment was conducted from 1 January 2020 to 31 March 2020. RB LED (red and blue LED, red:blue = 7:3), W LED (white LED, R:G:B = 5:3:2), and HPS (high-pressure sodium lamp) were used as the supplemental light source. Non-treatment was used as the control. The plant height, SPAD, and number of nodes of pepper plants have no significant differences by supplemental light sources. However, the number of ramifications plants was the greatest in RB LED light source. Moreover, supplemental lighting increased photosynthesis of the pepper plant, and especially, the RB LED had the highest photosynthesis rate during supplemental lighting period. Also, the yield of pepper increased in the supplemental lighting treatment than in the control, and the RB LED had the greatest yield than other light sources. The electricity consumption was the highest in W LED and the lowest in HPS light. Through the economic analysis, the RB LED had high economic efficiency. In conclusion, these results suggest that using RB LED for supplemental light source during low radiation in pepper greenhouse increase the yield and economic feasibility.

Supplemental Lighting by HPS and PLS Lamps Affects Growth and Yield of Cucumber during Low Radiation Period (약광기 HPS와 PLS lamp를 이용한 오이의 보광재배효과)

  • Kwon, Joon-Kook;Yu, In-Ho;Park, Kyoung-Sub;Lee, Jae-Han;Kim, Jin-Hyun;Lee, Jung-Sup;Lee, Dong-Soo
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.400-406
    • /
    • 2018
  • In this experiment the effect of supplemental lighting on the growth and yield of cucumber (Cucumis sativus L. 'Fresh') plants during low radiation period of winter season were investigated in glasshouses using common high-pressure sodium (HPS) lamps and newly developed plasma lighting system (PLS) lamps. Plants grown without supplemental lighting were considered as a control. Supplemental lighting was provided from November 20th, 2015 to March 15th, 2016 to ensure 14-hour photoperiod (natural+supplemental light), also lamps were operated automatically when the outside sun radiation levels were less than $100W{\cdot}m^{-2}$. Spectral analysis showed that HPS lamp had a discrete spectrum, lacked of the radiation in the 400-550 nm wave band (blue-green light), but had a high output in the orange-red region (550-650 nm). A higher red light output resulted in an increased red to far-red (R/FR) ratio in HPS lamp. PLS had a continuous spectrum and had a peak radiation in green region (490-550 nm). HPS has 12.6% lower output in photosynthetically active radiation (PAR) but 12.6% higher output in near infra-red (NIR) spectral regions compared to PLS. Both HPS and PLS lamps emitted very low levels of ultra-violet radiation (300-400 nm). Supplemental lighting both from HPS and PLS lamps increased plant height, leaf number, internode number and dry weight of cucumber plants compared to control. Photosynthetic activity of cucumber plants grown under two supplemental lighting systems was comparable. Number of fruits per cucumber plant (fruit weight per plant) in control, PLS, and HPS plots were 21.2 (2.9 kg), 38.7 (5.5 kg), and 40.4 (5.6 kg), respectively, thereby increasing yield by 1.8-1.9 times in comparison with control. An analysis of the economic feasibility of supplemental lighting in cucumber cultivation showed that considering lamp installation and electricity costs the income from supplemental lighting increased by 37% and 62% for PLS and HPS lamps, respectively.

Transpiration Modelling and Verification in Greenhouse Tomato (온실재배 토마토의 증산모델 개발 및 검증)

  • 이변우
    • Journal of Bio-Environment Control
    • /
    • v.6 no.3
    • /
    • pp.205-215
    • /
    • 1997
  • An accurate transpiration model for greenhouse tomato crop, which is liable to transpiration depression and yield loss because of low solar radiation and high humidity, could be an efficient tool for the optimum control of greenhouse climate and for the optimization of Irrigation scheduling. The purpose of this study was to develop transpiration model of greenhouse tomato and to carry out the experimental verification. The formulas to calculate the canopy transpiration and temperature simultaneously were derived from the energy balance of canopy. Transpiration and microclimate variables such as net radiation, solar radiation, humidity, canopy and air temperature, etc. were simultaneously measured to estimate parameters of model equations and to verify the suggested model. Leaf boundary layer resistance was calculated as a function of Nusselt number and stomatal diffusive resistance was parameterized by solar radiation and leaf-air vapor pressure deficit. The equation for stomatal diffusive resistance could explain more than 80% of its variation and the calculated stomatal diffusive resistance showed good agreements with the measured values in situations independent of which the constants of the equation were estimated. The canopy net radiation calculated by Stanghellini's model with slight modification agreed well with the measured values. The present transpiration model, into which afore-mentioned component equations were assembled, was found to predict the canopy temperature, instantaneous and daily transpiration with considerable accuracy in greenhouse climates.

  • PDF

Air Density Correction of Ionization Chamber using $^{90}Sr$ Radioactive Check Device ($^{90}Sr$ 방사성 동위원소를 이용한 전리함의 대기 보정계수 측정)

  • Park, Sung-Y.;Kim, Woo-C.;Shin, Dong-O.;Ji, Young-H.;Kwon, Soo-I.;Lee, Kil-D.;Cho, Young-K.;Loh, John-J.
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.4
    • /
    • pp.267-271
    • /
    • 1998
  • It is required to measure air density correction factor at the time of absorbed dose calibration or measurement. In general, thermometer and barometer are widely used for air density correction. However, this can be done using the radioactive check device with better accuracy. The measurements of air density correction were performed by using the radioactive check device, Unidos electrometer, and 0.6 cc Farmer-type ion chamber of PTW under the different environmental conditions. Above experiments were repeated with thermometer and barometer. By comparing the two methods, they were within the difference of 0.2 %. The overall uncertainty for the dose found in thermometer and barometer was 1.2 - 1.6 %, depending upon either one step or two, whereas the overall uncertainty for the radioactive check device was 1.02 %. This method may reduce the possible error which could occur when thermometer and barometer are not calibrated at regular basis.

  • PDF