• Title/Summary/Keyword: Radiation pattern reconfigurable antenna

Search Result 12, Processing Time 0.016 seconds

Multi-Functional Microstrip Spiral Antenna : Dual-Band Operation and Multi-Pattern Control (다양한 복사패턴을 가지는 이중대역용 다기능 마이크로스트립 스파이럴 안테나)

  • 김명기;오대영;박익모
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.11
    • /
    • pp.77-84
    • /
    • 2003
  • This paper presents a multi-functional microstrip spital antenna that operates in dual frequency bands. Several types of beam shape can be selected by controlling the phase difference of two spiral arms with the phase shifters located on each feed line. It has a normal beam at the lower frequency band, and four different patterns at the higher frequency band: normal beam, conical beam and two types of tilted beam. The antenna exhibits more than 10% of bandwidth at each band. The antenna is fabricated with conductor backed electromagnetic absorber in order to attain unidirectional radiation pattern and confirmed the multi-functionality by measurements.

Reconfigurable beam steering U-slot patch antenna with high gain for a wireless headset (무선 헤드셋용 고이득 재구성 빔 스티어링 U-slot 패치 안테나)

  • Kang, Seonghun;Yeom, Insu;Jung, Changwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5796-5800
    • /
    • 2014
  • This paper presents reconfigurable beam steering patch antenna with high gain for a wireless headset. Because existing antenna for wireless communication in headsets has an omni-directional radiation pattern, it has a deleterious effect in the vicinity of the human head. To reduce this effect, this paper proposed an antenna comprised of a U-slot and manufactured on a FR-4 substrate. The antenna operating at the 2.37-2.5 GHz band used a tapered matching method to match the impedance between the feed part and patch part. To implement the beam steering capability, the antenna used two PIN diodes. Using PIN diodes, the antenna presented three states ($S_0$, $S_1$ and $S_2$) in the maximum beam directions of the YZ-plane ($0^{\circ}$, $30^{\circ}$ and $330^{\circ}$, respectively). The peak gains of the antenna in the headset were 4.22-5.15 dBi. The fabricated antenna could communicate efficiently with a wireless headset.