• Title/Summary/Keyword: Radiation isocenter

Search Result 104, Processing Time 0.026 seconds

Assessment on Accuracy of Stereotactic Body Radiation therapy (SBRT) using VERO (VERO system을 이용한 정위적 체부 방사선치료(SBRT)의 정확성 평가)

  • Lee, Wi Yong;Kim, Hyun Jin;Yun, Na Ri;Hong, Hyo Ji;Kim, Hong Il;Baek, Seung Wan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.17-24
    • /
    • 2019
  • Purpose: The present study aims to assess the level of coherency and the accuracy of Point dose of the Isocenter of VERO, a linear accelerator developed for the purpose of the Stereotactic Body Radiation Therapy(SBRT). Materials and Method: The study was conducted randomly with 10 treatment plans among SBRT patients in Kyungpook National University Chilgok Hospital, using VERO, a linear accelerator between June and December, 2018. In order to assess the equipment's power stability level, we measured the output constancy by using PTW-LinaCheck, an output detector. We also attempted to measure the level of accuracy of the equipment's Laser, kV(Kilo Voltage) imaging System, and MV(Mega Voltage) Beam by using Tofu Phantom(BrainLab, Germany) to assess the accuracy level of geometrical Isocenter. We conducted a comparative analysis to assess the accuracy level of the dose by using an acrylic Phantom($30{\times}30{\times}20cm$), a calibrated ion chamber CC-01(IBA Dosimetry), and an Electrometer(IBA, Dosimetry). Results: The output uniformity of VERO was calculated to be 0.66 %. As for geometrical Isocenter accuracy, we analyzed the error values of ball Isocenter of inner Phantom, and the results showed a maximum of 0.4 mm, a minimum of 0.0 mm, and an average of 0.28 mm on X-axis, and a maximum of -0.4 mm, a minimum of 0.0 mm, and an average of -0.24 mm on Y-axis. A comparison and evaluation of the treatment plan dose with the actual measured dose resulted in a maximum of 0.97 % and a minimum of 0.08 %. Conclusion: The equipment's average output dose was calculated to be 0.66 %, meeting the ${\pm}3%$ tolerance, which was considered as a much uniform fashion. As for the accuracy assessment of the geometric Isocenter, the results met the recommended criteria of ${\pm}1mm$ tolerance, affirming a high level of reproducibility of the patient's posture. The difference between the treatment plan dose and the actual measurement dose was calculated to be 0.52 % on average, significantly less than the 3 % tolerance, confirming that it obtained predicted does. The current study suggested that VERO equipment is suitable for SBRT, and would result in notable therapeutic effect.

Practicability Assessment of Spherical Type Mechanical Check Device (SMCD) (Mechanical Check용 Spherical Device의 제작 및 특성 평가)

  • Lee, Byung-Koo;Kim, Gun-Oh;Kweon, Young-Ho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.1
    • /
    • pp.55-62
    • /
    • 2007
  • Purpose: Digital medical image commenced with an introduction of PACS has become more popular today in the radiation diagnosis and medical treatment and made great progress, in particular, for medical testing field, whereas it has made slow progress for radiation therapy area. In order to accommodate the current trend of digital from analog, a spherical type mechanical check device (SMCD) that is form of spherical differing from the existing form of flat or cube has been designed and tested its practicability to replace the part in mechanical check with digital image from QA operation. Materials and Methods: If the distance maintains constant between source(target) and image detector with constant distance to the center of spherical type mechanical check device(SMCD), the size will be shown as a constant image at all times regardless of its direction exposed. For the test, two accurate hemispheres are made and put together which results in a sphere of the equilateral circle. Results: It enables a variety of implementation of the existing mechanical check using digital image as follows: congruity level of radiation field and light field, size accuracy of radiation field and collimation field, gantry rotation isocenter check, collimation rotation isocenter check, room laser accuracy check, collimation rotation angle check, couch rotation angle check, and more. Conclusion: It has proved its practicability in checking isocenter congruity level as real time at the time of simultaneous rotation between gantry and couch that is applied to the non-coplanar field, which had been hard to apply as a device formed of existing flat or cube.

  • PDF

Development of a Method to Measure the Radiation Isocenter Size of Linear Accelerators and Quantitative Analysis of the Radiation Isocenter Size for Clinac 21EX Linear Accelerator (선형가속기 방사선 중심점의 크기 측정 방법 개발과 Clinac 21EX 선형가속기의 방사선 중심점 크기 분석)

  • Jeon, Ho-Sang;Nam, Ji-Ho;Park, Dahl;Kim, Yong-Ho;Kim, Won-Taek;Kim, Dong-Won;Ki, Yong-Kan;Kim, Dong-Hyun
    • Progress in Medical Physics
    • /
    • v.22 no.3
    • /
    • pp.131-139
    • /
    • 2011
  • A method to get a size of the radiation isocenter of linear accelerators using star-shot images was presented and a computer program was developed to automate the method. Accuracy of the method was verified. The developed program was used to measure sizes of the radiation isocenters for a Clinac 21EX (Varian, USA) using data of quality assurance (QA) performed from June 2008 to December 2010. To calculated the size of radiation isocenter, positions of two points on each central ray of the star-shot image were found and the equation of the central ray was determined using the positions of two points. Using the equations of central rays the radius of the minimum circle intersecting all the central rays, which is one half of the size of radiation isocenter, was calculated. The program measured x-intercepts and y-intercepts of the central rays within errors of 0.084 mm and sizes of radiation isocenters within 0.053 mm. All the errors were less than the spatial resolution of star-shot images 0.085 mm. The radiation isocenter sizes of Clinac 21EX were $0.33{\pm}0.27mm$, $0.71{\pm}0.36mm$, $0.50{\pm}0.16mm$ for collimator, gantry and couch respectively. During the measurement period all the measured sizes were less than 2.0 mm and within tolerance. The developed program could calculate the size of radiation isocenters and it would be helpful to routine QA.

A Smart Setup for Craniospinal Irradiation

  • Peterson, Jennifer L.;Vallow, Laura A.;Kim, Siyong;Casale, Henry E.;Tzou, Katherine S.
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.230-236
    • /
    • 2013
  • Our purpose is to present a novel technique for delivering craniospinal irradiation in the supine position using a perfect match, field-in-field (FIF) intrafractional feathering, and simple forward-optimization technique. To achieve this purpose, computed tomography simulation was performed with patients in the supine position. Half-beam, blocked, opposed, lateral, cranial fields with a collimator rotation were matched to the divergence of the superior border of an upper-spinal field. Fixed field parameters were used, and the isocenter of the upper-spinal field was placed at the same source-to-axis distance (SAD), 20 cm inferior to the cranial isocenter. For a lower-spinal field, the isocenter was placed 40 cm inferior to the cranial isocenter at a constant SAD. Both gantry and couch rotations for the lower-spinal field were used to achieve perfect divergence match with the inferior border of the upper-spinal field. A FIF technique was used to feather the craniospinal and spinal-spinal junction daily by varying the match line over 2 cm. The dose throughout the target volume was modulated using the FIF simple forward optimization technique to obtain homogenous coverage. Daily, image-guided therapy was used to assure and verify the setup. This supine-position, perfect match craniospinal irradiation technique with FIF intrafractional feathering and dose modulation provides a simple and safe way to deliver treatment while minimizing dose inhomogeneity.

Radiation Dose Accuracy 81 the Isocenter : Standard Stereotactic Radiosurgery Technique Developed at Seoul National University Hospital (서울대학교병원형 방사선수술 표준기법의 중심점 선량의 오차)

  • Shin Seong Soo;Kim Il Han;Ha Sung Whan;Park Charn Il;Kang Wee-Saing;Hur Sun Nyung
    • Radiation Oncology Journal
    • /
    • v.20 no.4
    • /
    • pp.391-395
    • /
    • 2002
  • Purpose : To confirm the accuracy of the radiation dose at the isocenter by the standard linear accelerator-based stereotactic radiosurgery technique which was developed at Seoul National University Hospital. Materials and Methods : Radiation dosimetry was undertaken during standard 5-arc radiosurgery using 6 MV X-ray beam from CL2100C linac. The treatment head was attached with circular tertiary collimators of 10 and 20 mm diameter. We measured the absorbed dose at the isocenter of a multi-purpose phantom using two kinds of detector : a 0.125 co ionization chamber and a silicon diode detector. Results : The dose differences at each arc plane between the planned dose and the measured dose at the isocenter raged from $-0.73\%\;to\;-2.69\%$ with the 0.125 cc ion chamber, and from $-1.29\%\;to\;-2.91\%$ with the diode detector during radiosurgery with the tertiary collimator of 20 mm diameter. Those with the 10-mm tertiary collimator ranged from $-2.39\%\;to\;-4.25\%$ with the diode. Conclusion : The dose accuracy at the isocenter was ${\pm}3\%$. Therefore, further efforts such ws modification in processing of the archived image through DICOM3.0 format are required to lessen the dose difference.

Practicability Assessment of Spherical Mechanical Check Device(SMCD) (Mechanical Check용 Spherical device의 제작 및 특성 평가)

  • Lee, Byung-Koo;Yang, Dae-Sik;Kweon, Young-Ho;Ko, Shin-Gwan;Han, Dong-Kyoon
    • Journal of radiological science and technology
    • /
    • v.30 no.2
    • /
    • pp.153-159
    • /
    • 2007
  • Digital medical image commenced with an introduction of PACS has become more popular today in the radiation diagnosis and radiation treatment and made great progress, in particular, for medical testing field, whereas it has made slow progress for radiation treatment field. In order to accommodate the current trend of digital from analog, a spherical mechanical check device(SMCD) that is the form of spherical differing from the existing form of flat or cube has been designed and tested its practicability to replace the part in mechanical check with digital image from QA operation. If the distance maintains constance between source(target) and image detector with constant distance to the center of spherical mechanical check device(SMCD), the size will be shown as a constant image at all times regardless of its direction exposed. For the test, two accurate hemispheres are made and put together which results in a sphere of the equilateral circle. It enables a variety of implementation of the existing mechanical check using digital image as follows: congruity level of radiation field and light field, size accuracy of radiation field and collimation field, gantry rotation isocenter check, collimation rotation isocenter check, room laser accuracy check, collimation rotation angle check, couch rotation angle check, and more. In addition, it has proved its practicability in checking isocenter congruity level as real time at the time of simultaneous rotation between gantry and couch that is applied to the non-coplanar field, which had been hard to apply as a device formed of existing flat or cube.

  • PDF

Analysis of the Inter- and Intra-treatment Isocenter Deviations in Pelvic Radiotherapy With Small Bowel Displacement System (Small Bowel Displacement System을 이용한 골반부 방사선조사에서 치료간 및 치료중 중심점 위치변동에 관한 분석)

  • Kim Moon Kyung;Kim Dae Yong;Ahn Yong Chan;Huh Seung Jae;Lim Do Hun;Shin Kyung Hwan;Lee Kyu Chan
    • Radiation Oncology Journal
    • /
    • v.18 no.2
    • /
    • pp.114-119
    • /
    • 2000
  • Purpose : To evaluate the e지ent and frequency of the inter- and intra-treatment isocenter deviations of the whole pelvis radiation field in using small bowel displacement system (SBDS). Methods and Materials : Using electronic portal imaging device (EPID), 302 postero-anterior 232 lateral portal images were prospectively collected from 11 patients who received pelvic radiation therapy (7 with cervix cancer and 4 with rectal cancer). All patients were treated in prone position with SBDS under the lower abdomen. Five metallic fiducial markers were placed on the image detection unit for the recognition of the isocenter and magnification. After aligning the bony landmarks of the EPID images on those of the reference image, the deviations of the isocenter were measured in right-left (RL), cranio-caudal (CC), and PA directions. Results : The mean inter-treatment deviation of the isocenter in each RL, CC, and PA direction was 1.2 mm ($\pm$ 1.6 mm), 1.0 mm ($\pm$3.0 mm), and 0.9 mm ($\pm$4.4 mm), respectively. Inter-treatment isocenter deviations over 5 mm and 10 mm in RL, CC, and PA direction were 2, 12, 24$\%$, and 0, 0, 5$\%$, respectively. Maximal deviation was detected in PA direction, and was 11.5 mm. The mean intratreatment deviation of the isocenter in RL, CC, and PA direction was 0 mm ($\pm$0.9 mm), 0.1 mm ($\pm$ 1.9mm), and 0 mm ($\pm$1.6 mm), respectively. All intra-treatment isocenter deviations over 5 mm in each direction were 0, 1, 1$\pm$, respectively. Conclusions : As the greatest and the most frequent inter-treatment deviation of the isocenter was along the PA direction, it is recommended to put more generous safety margin toward the PA direction on the lateral fields if clinically acceptable in pelvic radiotherapy with SBDD.

  • PDF

Rapid Optimization of Multiple Isocenters Using Computer Search for Linear Accelerator-based Stereotactic Radiosurgery (Multiple isocenter를 이용한 뇌정위적 방사선 수술시 컴퓨터 자동 추적 방법에 의한 고속의 선량 최적화)

  • Suh Tae-suk;Park Charn Il;Ha Sung Whan;Yoon Sei Chul;Kim Moon Chan;Bahk Yong Whee;Shinn Kyung Sub
    • Radiation Oncology Journal
    • /
    • v.12 no.1
    • /
    • pp.109-115
    • /
    • 1994
  • The purpose of this paper is to develop an efficient method for the quick determination of multiple isocenters plans to provide optimal dose distribution in sterotactic radiosurgery. A Spherical dose model was developed through the use of fit to the exact dose data calculated in a 18cm diameter of spherical head phantom. It computes dose quickly for each spherical part and is useful to estimate dose distribution for multiple isocenters. An automatic computer search algorithm was developed using the relationship between the isocenter move and the change of dose shape, and adapted with a spherical dose model to determine isocenter separation and cellimator sizes quickly and automatically. A spheric81 dose model shows a comparable isodose distribution with exact dose data and permits rapid calculations of 3-D isodoses. the computer search can provide reasonable isocenter settings more quickly than trial and error types of plans, while producing steep dose gradient around target boundary. A spherical dose model can be used for the quick determination of the multiple isocenter plans with 3 computer automatic search. Our guideline is useful to determine the initial multiple isocenter plans.

  • PDF

Optimization of Dose Distribution for LINAC-based Radiosurgery with Multiple Isocenters (LINAC 뇌정위적 방사선 수술시 Multiple Isocenters를 이용한 최적 선량분포 계획)

  • Suh Tae-Suk;Yoon Sei Chul;Shinn Kyung Sub;Bahk Yong Whee
    • Radiation Oncology Journal
    • /
    • v.9 no.2
    • /
    • pp.351-359
    • /
    • 1991
  • The current LINAC technique for radiosurgery utilizes a single isocenter approach with multiple noncoplanar arcs. This approach results in spherical dose distributions in the target. Many arteriovenous malformations and tumors suitable for radiosurgical treatment have non-spherical or irregular shapes. The basic approach presented in this paper is to use two or multiple isocenters with standard arcs to shape irregular target volumes through the use of multiple spherical targets. Selection of reasonable irradiation parameters in the first stage is critical to the success of real-time optimization. A useful guideline for optimum isocenter separation and collimator size is developed to shape the target margin uniformly with an desired isodose surface for an elongated target. The implementation of multiple isocenters with three dimensional dose model and application of multiple isocenters approach to several cases are discussed.

  • PDF

Isocenter Verification Using Linac-Gram Films Taken with Angiolocalizer : Improved Quality Assurance of Fractionated Stereotactic Radiation Therapy(FSRT) (Angiolocalizer를 사용하여 얻어진 Linac-Gram을 이용한 조사야 중심의 정확도 평가 (FSRT의 진보된 Quality Assurance))

  • Cho, Jung-Keun;Park, Young-Hwan;Ju, Sang-Kyu;Kim, Young-Gon;Cho, Hyun-Sang
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.9 no.1
    • /
    • pp.25-28
    • /
    • 1997
  • With the advances in radiation therapy technology and equipment, the need for more accurate and safer radiation delivery to the target region has been continuously growing. Stereotactic Radiosurgery(SRS) is a good example of $^{\ast}Accuracy^{\ast}$ but has a substantial risk of causing severe late neurological damages. Fractionated Stereotactic Radiation Therapy(FSRT) is a modification of SRS enabling conventional fractionation with maintaining accuracy using noninvasive and relocatable frame. Verification of mechanical accuracy in FSRT has been done according to the manufacture's recommendations using RLPP, LTLF, and Depth-helmet. In order to reinforce this, we have developed additional novel verification procedure using Linac-grams with the Angiolocalizer attached on the GTC frame, which are then digitized into the planning software(X-Knife) to generate the three dimensional coordinates for cmoparison. This method has been successful in such ways that the anatomical landmarks are identifiable on the Linac-gram films and that the serial comparisons of the stereotactic coordinates of the isocenter are possible with more certainty a along the FSRT course than before.

  • PDF