• Title/Summary/Keyword: Radiation induced segregation (RIS)

Search Result 3, Processing Time 0.02 seconds

Radiation induced grain boundary segregation in ferritic/martensitic steels

  • Xia, L.D.;Ji, Y.Z.;Liu, W.B.;Chen, H.;Yang, Z.G.;Zhang, C.;Chen, L.Q.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.148-154
    • /
    • 2020
  • The radiation induced segregation of Cr at grain boundaries (GBs) in Ferritic/Martensitic steels was modeled assuming vacancy and interstitialcy diffusion mechanisms. In particular, the dependence of segregation on temperature and grain boundary misorientation angle was analyzed. It is found that Cr enriches at grain boundaries at low temperatures primarily through the interstitialcy mechanism while depletes at high temperatures predominantly through the vacancy mechanism. There is a crossover from Cr enrichment to depletion at an intermediate temperature where the Cr:Fe vacancy and interstitialcy diffusion coefficient ratios intersect. The bell-shape Cr enrichment response is attributed to the decreasing void sinks inside the grains as temperature rises. It is also shown that low angle grain boundaries (LAGBs) and special Σ coincidence-site lattice (CSL) grain boundaries exhibit suppressed radiation induced segregation (RIS) response while high angle grain boundaries (HAGBs) have high RIS segregation. This different behavior is attributed to the variations in dislocation density at different grain boundaries.

Surface segregation of NiZr and CuZr alloys.

  • Kang, H.J.;Park, N.S.;Kim, M.W.;O'Conner, D.J.;Macdonald, R.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1994.02a
    • /
    • pp.35-35
    • /
    • 1994
  • The surface segragation of NiZr, CuZr alloy has been studied wi th X-ray Imotoelectron spectroscopy(XPS), Auger electron spectroscopy(AES) and low energy ion scattering(LEIS). The composition of outmost atomic layer has been determinded by the use of LEIS at several incident energies using Ar+ ion. In the LEIS analysis, the effect of charge exchange has been estimated by a novel measurment of the charge exchange parameters while simul taneous determining the relative concentrations of Ni and Zr and the complementary information obtained will be described. The composition of the clean annealed surface, measured with AES only, will be contrasted wi th the surface concentration of the preferentially sputtered surface. The experimental results has been clearly demonstrated that when the NiZr ruld CuZr alloys are exposed to continuous Ar+ ion bombardment the outermost atomic layer is Zr rich due to preferential sputtering of Ni atoms. where Ni is preferentially sputtered, but the difference in sputtering yields is not sufficient to explain the observed composition. Therefore, it is necessary to consider other processes such as Radiation Induced Segregation(RIS). The surface composition of the heated sample surface predicts that Zr should surface segregate which futher supports the view that part of the Zr enrichment is due to RIS.to RIS.

  • PDF

Defects evolution and element segregation of Ni-Mo-Cr alloy irradiated by 30 keV Ar ions

  • Liu, Min;Liu, Wenguan;He, Xiujie;Gao, Yantao;Liu, Renduo;Zhou, Xingtai
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1749-1755
    • /
    • 2020
  • In present study, TEM foils of Ni-Mo-Cr alloy were directly irradiated with 30 keV Ar ions to allow direct characterization. The defects evolution and element segregation after irradiation were investigated by TEM and HAADF-EDS linear scanning. At low irradiation doses (1.38 and 2.76 dpa), black dots were formed and grew with increasing dose. Complicated defects including peas-shaped dislocation loops, polygon dislocation networks and large loops were visible in samples irradiated to high doses (13.8 and 27.6 dpa). Meanwhile, dislocation channels appeared, in which defects were swept out. Significant Mo depletions at dislocation lines and grain boundaries were induced by irradiation due to large misfits between Mo-Ni atoms and high content of Mo.