• Title/Summary/Keyword: Radiation heat loss

Search Result 163, Processing Time 0.022 seconds

A Study on Solar Radiation Analysis and Saving Elements of Heating Load according to the Location and Type of Housing in Multi-family Apartments (공동주택 주동형태별 세대위치에 따른 일사분석 및 난방부하 절감요소에 관한 연구)

  • Kim, Soo-Jeong;Park, Doo-Yong;Kim, Kang-Soo
    • KIEAE Journal
    • /
    • v.13 no.1
    • /
    • pp.47-55
    • /
    • 2013
  • This study aims to evaluate the correlation between vertical solar radiation and the level of heating load according to the location and type of housing in multi-family apartments. This study shows that heating load is related with factors such as wall loss, window loss, ventilation loss and solar radiation gain. The heating load increases in the order of the middle floors, the highest floors and the lowest floors. The lowest and the highest floors are the most vulnerable floors, and it should be as emphasized as the middle floors. The heating load saving proposal contains 52 Alt. that shows heating load savings from min. 4% to max. 49%. The goal is to reduce the heating load of the highest and the lowest floors to the level of the middle floors. The result showed that there are 3 Alt. for the lowest floors and 16 Alt. for the highest floors as the heating load saving proposal. This study suggests integrated application to compose saving elements of heating load. so it could be utilized as a data for the construction of passive houses.

A flammability limit model for hydrogen-air-diluent mixtures based on heat transfer characteristics in flame propagation

  • Jeon, Joongoo;Choi, Wonjun;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1749-1757
    • /
    • 2019
  • Predicting lower flammability limits (LFL) of hydrogen has become an ever-important task for safety of nuclear industry. While numerous experimental studies have been conducted, LFL results applicable for the harsh environment are still lack of information. Our aim is to develop a calculated non-adiabatic flame temperature (CNAFT) model to better predict LFL of hydrogen mixtures in nuclear power plant. The developed model is unique for incorporating radiative heat loss during flame propagation using the CNAFT coefficient derived through previous studies of flame propagation. Our new model is more consistent with the experimental results for various mixtures compared to the previous model, which relied on calculated adiabatic flame temperature (CAFT) to predict the LFL without any consideration of heat loss. Limitation of the previous model could be explained clearly based on the CNAFT coefficient magnitude. The prediction accuracy for hydrogen mixtures at elevated initial temperatures and high helium content was improved substantially. The model reliability was confirmed for $H_2-air$ mixtures up to $300^{\circ}C$ and $H_2-air-He$ mixtures up to 50 vol % helium concentration. Therefore, the CNAFT model developed based on radiation heat loss is expected as the practical method for predicting LFL in hydrogen risk analysis.

An Experimental Study on Heat Transmission Characteristics of the Conventional and Prefabricated Ondol (기존온수온돌과 조립식 온수온돌의 전열특성에 관한 실험적 연구)

  • Min, J.H.;Lee, C.G.;Jang, M.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.611-621
    • /
    • 1995
  • The objectives of this study are to find out and to analyze the heat transmission characteristics of the conventional and prefabricated Ondol systems. To compare the thermal characteristics of these Ondol, a real sized Ondol model is set in a chamber. Hot water whose temperature is varied from $45^{\circ}C$ to $60^{\circ}C$ with $5^{\circ}C$ interval is supplied to each Ondol system. At that time the temperature distribution of floor surface, the amount of supplied heat, the heat radiation aspect and the heat loss from the floor to the underground are measured and analyzed simultaneously. As a result, even if the supplied hot water temperature to the prefabricated Ondol panel is lower by about $5^{\circ}C$ than that of the conventional Ondol panel, the net radiant effect is same. Heat radiation efficiency of the prefabricated Ondol panel is over 5% better than that of the conventional Ondol panel. It takes 12 hours for the conventional Ondol and 45 minutes for the prefabricated Ondol, respectively to reach steady state.

  • PDF

Ignition of a Vertically Positioned Fuel Plate by Thermal Radiation (열복사에 의한 수직연료면의 점화현상 해석)

  • 한조영;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2353-2364
    • /
    • 1995
  • The ignition phenomena of a solid fuel plate of polymethyl-methacrylate(PMMA), which is vertically positioned and exposed to a thermal radiation source, is numerically studied here. A two-dimensional transient model includes such various aspects as thermal decomposition of PMMA, gas phase radiation absorption, gas phase chemical reaction and air entrainment by natural convection. Whereas the previous studies considers the problem approximately in a one-dimensional form by neglecting the natural convection, the present model takes account of the two-dimensional effect of radiation and air entrainment. The inert heating of the solid fuel is also taken into consideration. Radiative heat transfer is incorporated by th Discrete Ordinates Method(DOM) with the absorption coefficient evaluated using gas species concentration. The thermal history of the solid fuel plate shows a good agreement compared with experimental results. Despite of induced natural convective flow that induces heat loss from the fuel surface, the locally absorbed radiant energy, which is converted to the internal energy, is found to play an important role in the onset of gas phase ignition. The ignition is considered to occur when the rate of variation of gas phase reaction rate reaches its maximum value. Once the ignition takes place, the flame propagates downward.

A Study on the Heat Release Rate of EPS Sandwich Panel Core (EPS 샌드위치 패널 심재의 열방출율에 관한 연구)

  • Park, Hyung-Ju;Cho, Myung-Ho
    • Fire Science and Engineering
    • /
    • v.22 no.5
    • /
    • pp.72-78
    • /
    • 2008
  • The mass loss rate and heat release rate of EPS sandwich panel cores were analysed using variable external irradiation level. The experimental materials were exposed to incident heat fluxes form 20 to 50 kW/$m^2$. For the measurement of mass loss rate and heat release rate, the size of specimen was $100mm{\times}100mm{\times}50mm$ and the samples were 3 different kinds. The combustion heat were carried out from the Oxygen bomb calorimeter and the mass loss rate and heat release rate were carried out from the Mass loss calorimeter according to ISO 5660-1. As the results of this study, the mass loss rate of Type A, B, and C were 2.7 g/$m^2s$, 2.8 g/$m^2s$, and 2.3 g/$m^2s$ and the heat release rate of Type A, B, and C were 58.23 kW/$m^2$, 47.19 kW/$m^2$, and 50.06 kW/$m^2$ respectively at the heat flux of 50 kW/$m^2$. In conclusion, when the heat release characteristics applied to a classification system of Canada, Type A and C can be classified grade C-3, and Type C can be classified grade C-2 from all data of this study.

Temperature Measurement Method with Radiation Correction for Very High Temperature Gas (복사 간섭 보정을 통한 초고온 가스 온도 측정 방법)

  • Kim, Chan-Soo;Hong, Sung-Deok;Seo, Dong-Un;Kim, Yong-Wan;Lee, Won-Jae
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2059-2063
    • /
    • 2008
  • When a thermocouple is placed in a high temperature gas-flow stream, the measured temperature could be biased from the true gas temperature due to a large radiation heat loss from a thermocouple surface to its surroundings. In this study, two thermocouples of unequal diameters with 1/8 inch and 1/16 inch are used to correct the radiation effect. The method is called the reduced radiation error (RRE). The preliminary test results show that the radiation and the sheath conduction cannot be negligible for the gas temperature measurement. To minimize the sheath conduction effect, all the thermocouples will have a grounded junction and 1/8 inch thermocouple will be replaced with 1 mm thermocouples. In addition, the computational fluid dynamics code analysis shows that there is a negligible temperature difference between the positions where the thermocouples were installed.

  • PDF

A Study on Flame Propagation Through a Mixture of H2/Air and Inert Particles with Radiation Effect (복사효과를 고려한 수소/공기/불활성입자 혼합물에서의 화염전파에 대한 연구)

  • Kim, Deok Yeon;Son, Jin Wook;Baek, Seung Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.1040-1047
    • /
    • 1999
  • The characteristics of flame propagation in inert particle-laden $H_2$/Air premixed gas are numerically investigated on this study. The 2nd order TVD scheme is applied to numerical analysis of governing equations and multi-step chemical reaction model and detailed transport properties are sued to solve chemical reaction terms. Radiation heat transfer is computed by applying the finite volume method to a radiative transfer equation. The burning velocities against the mole fractions of hydrogen agree well with results performed by different workers. The inert particles play significant roles in the flame propagation on account of momentum and heat transfer between gas and particles. Gas temperature, pressure and flame propagation speed are decreased as the loading ratio of particle is increased. Also the products behind flame zone contain lots of water vapor whose absorption coefficient is much larger than that of unburned gas. Thus, the radiation effect of gas and particles must be considered simultaneously for the flame propagation in a mixture of $H_2$/Air and inert particles. As a result, it is founded that because the water vapor emits much radiation and this emitted radiation is released at boundaries as radiant heat loss as well as reabsorbed by gas and particles, flame propagation speed and flame structure are altered with radiation effect.

Oscillatory Instabilities of Edge Flames in Solid Rocket Combustion (고체연료로켓에서 에지화염의 맥동 불안정성)

  • Kim Kang-Tae;Park Jun-Sung;Park Jeong;Kim Jeong-Soo;Keel Sang-In;Cho Han-Chang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.275-278
    • /
    • 2006
  • Systematic experiments in $CH_4/Air$ counterflow diffusion flames diluted with He have been undertaken to study the oscillatory instability in which lateral heat loss could be remarkable at low global strain rate. The oscillatory instability arises for Lewis numbers greater than unity and occurs near extinction condition. The dynamic behaviors of extinction in this configuration can be classified into three modes; growing, harmonic and decaying oscillation mode near extinction. As the global strain rate decreases, the amplitude of the oscillation becomes larger. This is caused by the increase of lateral heat loss which ran be confirmed by the reduction of lateral flame size. Oscillatory edge flame instabilities at low global strain rate are shown to be closely associated with not only Lewis number but also heat loss (radiation and lateral heat loss).

  • PDF

Study on Flame Oscillations in Laminar Lift-off Butane Flames Diluted with Nitrogen (질소 희석된 부탄 부상화염에 있어서 화염진동에 관한 연구)

  • Yoon, Sung-Hwan;Park, Jeong;Kwon, Oh-Boong;Kim, Jeong-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.729-738
    • /
    • 2010
  • The characteristics of lifted butane flames diluted with nitrogen have been investigated experimentally in order to elucidate the mechanism of individual flame oscillation modes. Flame oscillations in laminar free-jet lift-off flames are classified into the following five regimes: a stabilized lift-off regime (I), a heat-loss-induced oscillation (II), a buoyancy-induced oscillation along with a heat-loss-induced oscillation (III), a combined form of an oscillation prior to blow-out and a heat-loss-induced oscillation (IV), and a combination of an oscillation prior to blow-out and a buoyancy-induced oscillation along with a heat-loss-induced oscillation (V). The characterization of the individual flame oscillations modes are presented and discussed using Strouhal numbers and their relevant parameters by the analysis of the power spectrum for temporal variation of the lift-off height.

Surface Energy Balance at Sejong Station, King George Island, Antarctica (남극 세종기지의 에너지 평형)

  • Kim, Jhoon;Cho, Hi Ku;Jung, Yeon Jin;Lee, Yun Gon;Lee, Bang Yong
    • Atmosphere
    • /
    • v.16 no.2
    • /
    • pp.111-124
    • /
    • 2006
  • This study examines seasonal variability of the surface energy balance at the King Sejong Station, Antarctica, using measurements and estimates of the components related to the balance for the period of 1996 to 2004. Annual average of downward shortwave radiation at the surface is 81 $Wm^{-2}$ which is 37% of the extraterrestrial value, with the monthly maximum of 188 $Wm^{-2}$ in December and the minimum of 8 $Wm^{-2}$ in June. These values are relatively smaller than those at other stations in Antarctica, which can be attributed to higher cloudy weather conditions in Antarctic front zone. Surface albedo varies between ~0.3 in the austral summer season and ~0.6 in the winter season. As a result, the net shortwave radiation ranges from 117 $Wm^{-2}$ down to 3 $Wm^{-2}$ with annual averages of 43 $Wm^{-2}$. Annual average of the downward longwave radiation shows 278 $Wm^{-2}$, ranging from 263 $Wm^{-2}$ in August to 298 $Wm^{-2}$ in January. The downward longwave radiation is verified to be dependent strongly on the air temperature and specific humidity, accounting for 74% and 79% of the total variance in the longwave radiation, respectively. The net longwave radiation varies between 25 $Wm^{-2}$ and 40 $Wm^{-2}$ with the annual averages of 30 $Wm^{-2}$. Accordingly, the annual average energy balance is dominated by radiative warming of a positive net all-wave radiation from September to next March and radiative cooling of a negative net all-wave radiation from April to August. The net all-wave radiative energy gain and loss at the surface is mostly balanced by turbulent flux of sensible and latent heat. The soil heat flux is of negligible importance in the surface energy balance.