• Title/Summary/Keyword: Radiation field Size

Search Result 389, Processing Time 0.023 seconds

Film Dosimetry for Intensity Modulated Radiation Therapy : Dosimetric Evaluation (필름을 사용한 세기변조치료법에 대한 선량측정)

  • Ju Sang Gyu;Yeo Inhwan Jason;Huh Seung Jae;Choi Byung Ki;Park Young Hwan;Ahn Yong Chan;Kim Dae Yong;Kong Young Kun
    • Radiation Oncology Journal
    • /
    • v.20 no.2
    • /
    • pp.172-178
    • /
    • 2002
  • Purpose : X-ray film over responds to low-energy photons in relative photon beam dosimetry because its sensor is based on silver bromide crystals, which are high-Z molecules. This over-response becomes a significant problem in clinical photon beam dosimetry particularly in regions outside the penumbra. In intensity modulated radiation therapy (IMRT), the radiation field is characterized by multiple small fields and their outside-penumbra regions. Therefore, in order to use film dosimetry for IMRT, the nature the source of the over-response in its radiation field need to be known. This study is aimed to verify and possibly improve film dosimetry for IMRT. Materials and Method : Modulated beams were constructed by a combination of five or seven different static radiation fields using 6 MeV X-rays. In order to verify film dosimetry, we used X-ray film and an ion chamber were used to measure the dose profiles at various depths in a phantom. In addition, in order to reduce the over-response, 0.01 inch thick lead filters were placed on both sides of the film. Results : The measured dose profiles showed a film over-response at the outside-penumbra and low dose regions. The error increased with depths and approached 15% at a maximum for the field size of $15{\times}15cm^2$ at 10 cm depth. The use of filters reduced the error to 3%, but caused an under-response of the dose in a perpendicular set-up. Conclusion : This study demonstrated that film dosimetry for IMRT involves sources of error due to its over-response to low-energy Photons. The use of filers can enhance the accuracy in film dosimetry for IMRT. In this regard, the use of optimal filter conditions is recommended.

A Case Study of Application of Exposure Index in Computed Radiography by Using Human Chest Phantom (인체 흉부 모형 팬텀을 이용한 컴퓨터방사선영상에서 노출지수의 적용 사례 연구)

  • Jeong, Hoi-Woun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.41 no.6
    • /
    • pp.533-538
    • /
    • 2018
  • As the use of digital radiographic system has been expanded, there are some concerns an increase about in patient of radiation dose. Therefore, International Electro-technical Commission (IEC) has been proposed a standard foe exposure index (EI). In this study, the EI was measured on human chest model using computed radiography (CR). Radiation quality used RQA5 of IEC62494-1. After acquiring the chest anterior posterior image (Chest AP) by using the phantom, the EI was obtained by applying the system response. In this study, we have analyzed the images with the detector size (Full filed ROI) and the optimized image (Fit filed ROI). The EI increased proportionally with radiation dose increase. Due to the discrete increase in pixel value, the EI showed an exponential increase. The discrete increase in noise equivalent quanta (NEQ) resulted in a discrete increase in the EI. The EI of the two images used in this study increased with increasing NEQ but showed different increments. For the measurement of the EI, IEC standards must be followed. The EI should be used as an index to evaluate the image quality for quality control of X-ray image rather than as an indicator of exposure dose. When calculating the EI, the system response should be applied depending on whether or not the grid is used. The size of the field should be obtained by including only the necessary parts.

Optimum Radial Build of a Low Aspect Ratio Tokamak Reactor

  • Hong, B.G.;Hwang, Y.S.;Kang, J.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.397-397
    • /
    • 2011
  • In a low aspect ratio (LAR) tokamak reactor with a superconducting toroidal field (TF) coil, the radial build of TF coil and the shield play a key role in determining the size of a reactor. For self-consistent determination of the reactor components and physics parameters, a system analysis code is coupled with one-dimensional radiation transport code. Conceptual design study of a compact superconducting LAR tokamak reactor with aspect ratio less than 2.5 was conducted and the optimum radial build was identified. It is shown that the use of an improved shielding material and high temperature superconducting magnets with high critical current density opens up the possibility of a fusion power plant with compact size and small re-circulating power simultaneously at low aspect ratio, and that by using an inboard neutron reflector instead of breeding blanket, tritium self-sufficiency is possible with outboard blanket only and thus compact sized reactor is viable.

  • PDF

A Study on the Heat and Gas Flow for Fire Simulation in a Tunnel (화재시 터널내 열유동 시뮬레이션 모델 연구)

  • 우경범;김원갑;한화택
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.7
    • /
    • pp.584-591
    • /
    • 2002
  • The objective of the present study is to develop a model to predict heat and gas flow movement by fire in a tunnel. The model includes component models such as turbulence model, combustion model, fire model, jet fan model, etc. It has been validated using the data from Memorial Tunnel Fire Ventilation Test Program. The predictions are in good quantitative agreement with the experimental data in the far-field region of the tunnel. It should be further investigated to develop models for radiation between surfaces, for composite boundary conditions for conduction and convection, and for vigorous turbulent mixing in a tunnel especially for a large size of fire.

A Study on Design and Application of Tissue Compensator for 6MV X-rays (6MV X-선에 대한 조직 보상체의 제작 및 응용에 관한 연구)

  • Chai Kyu Young;Choi Eun Kyung;Chung Woong Ki;kang Wee Saing;Ha Sung Whan;Park Charn Il
    • Radiation Oncology Journal
    • /
    • v.7 no.1
    • /
    • pp.123-132
    • /
    • 1989
  • A radiation beam incident on an irregular or sloping surface produces the non-uniformity of absorded dose. The use of a tissue compensator can partially correct this dose inhomogeneity. The tissue compensator is designed based on the patient's three dimensional contour. After required compensator thickness was determined according to tissue deficit at $25cm\pm25cm$ field size, 10cm depth for 6MV x-rays, tissue deficit was mapped by isoheight technique using laser beam system. Compensator was constructed along the designed model using 0.8mm lead sheet or 5mm acryl plate. Dosimetric verification were peformed by film dosimetry using humanoid phantom. Dosimetric measurements were normalized to central axis full phantom readings for both compensated and non-compensated field. Without compensation, the percent differences in absorbed dose ranged as high as $12.1\%$ along transverse axis, $10.8\%$ along vertical axis. With the tissue compensators in place, the difference was reduced to $0\~43\%$ Therefore, it can be concluded that the compensator system constructed by isoheihnt technique can produce good dose distribution with acceptible inhomogeneity, and such compensator system can be effectively applied to clinical radiotherapy.

  • PDF

The Axial-displaced gregorian antenna design using Ray-tracing Method (Ray-tracing 기법을 이용한 축변위 그레고리안 안테나 설계)

  • Kim, Chun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.6
    • /
    • pp.515-521
    • /
    • 2014
  • In this paper, we designed axis-displaced Gregorian antenna by using Ray-tracing method. This antenna improves gain, VSWR by rotating the axis of the sub-reflector to get rid of E-field wave returned from sub-reflector to feed horn. Therefore it reduce the sub-reflector size and the volume of antenna. This method is used to track the propagation path for radiation pattern of feed horn from feed horn to sub-reflector, main-reflector and air. We get E-field distribution of this antenna aperture and calculate antenna radiation pattern and optimize the antenna performance. The Ray-tracing Method was verified because the gain, radiation patterns, side lobe level, beam width and return loss of the designed antenna are very similar to CST simulation result and a measured result of the fabricated antenna.

Evaluation of Application of 3D Printing Phantom According to Manufacturing Method (구성 물질에 따른 3D 프린팅 팬텀의 적용 평가)

  • Young Sang Kim;Ju Young Lee;Hoon Hee Park
    • Journal of Radiation Industry
    • /
    • v.17 no.2
    • /
    • pp.173-181
    • /
    • 2023
  • 3D printing is a technology that can transform and process computerized data obtained through modeling or 3D scanning via CAD. In the medical field, studies on customized 3D printing technology for clinical use or patients and diseases continue. The importance of research on filaments and molding methods is increasing, but research on manufacturing methods and available raw materials is not being actively conducted. In this study, we compare the characteristics of each material according to the manufacturing method of the phantom manufactured with 3D printing technology and evaluate its usefulness. We manufactured phantoms of the same size using poly methyl meta acrylate (PMMA), acrylonitrile butadiene styrene (ABS), and Poly Lactic Acid (PLA) based on the international standard phantom of aluminum step wedge. We used SITEC's radiation generator (DigiRAD-FPC R-1000-150) and compared the shielding rate and line attenuation coefficient through the average after shooting 10 times. As a result, in the case of the measured dose transmitted through each phantom, it was confirmed that the appearance of the dose measured for phantoms decreased linearly as the thickness increased under each condition. The sensitivity also decreased as the steps increased for each phantom and confirmed that it was different depending on the thickness and material. Through this study, we confirmed that 3D printing technology can be usefully used for phantom production in the medical field. If further development of printing technology and studies on various materials are conducted, it is believed that they will contribute to the development of the medical research environment.

Response of the Geomagnetic Activity Indices to the Solar Wind Parameters

  • Ahn, Byung-Ho;Park, Yoon-Kyung
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.2
    • /
    • pp.129-138
    • /
    • 2008
  • This study attempts to show how the geomagnetic indices, AU, AL and Dst, respond to the interplanetary parameters, more specifically, the solar wind electric field VBz during southward interplanetary magnetic field (IMF) period. The AU index does not seem to respond linearly to the variation of southward IMF. Only a noticeable correlation between the AU and VBz is shown during summer, when the ionospheric conductivity associated with the solar EUV radiation is high. It is highly likely that the effect of electric field on the eastward electrojet intensification is only noticeable whenever the ionospheric conductivity is significantly enhanced during summer. Thus, one should be very cautious in employing the AU as a convection index during other seasons. The AL index shows a significantly high correlation with VBz regardless of season. Considering that the auroral electrojet is the combined result of electric field and ionospheric conductivity, the intensification of these two quantities seems to occur concurrently during southward IMF period. This suggests that the AL index behaves more like a convection index rather than a substorm index as far as hourly mean AL index is concerned. Contrary to the AU index, the AL index does not register the maximum value during summer for a given level of VBz. It has something to do with the findings that discrete auroras are suppressed in sunlight hemisphere (Newell et al. 1996), thus reducing the ionospheric conductivity during summer. As expected, the Dst index tends to become more negative as VBz gets intensified. However, the Dst index (nT) is less than or equal to 15VBz(mV/m) + 50(Bz < 0). It indicates that VBz determines the lower limit of the storm size, while another factor(s), possibly substorm, seems to get further involved in intensifying storms. Although it has not been examined in this study, the duration of southward IMF would also be a factor to be considered in determining the size of a storm.

The Effects of Magnetic Field on TLD Glow Curve (자기장이 열형광선량계의 글로우 곡선에 미치는 영향)

  • Je, Jaeyong;Kang, Eunbo
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.6
    • /
    • pp.415-418
    • /
    • 2013
  • Thermoluminescent dosimeter utilizes the fact that when irradiated specimen is heated up, some part of the absorbed energy is emitted from the specimen as light with longer wavelength. This research aims at analyzing the glow curves of four TLD-100 exposed to a magnetic field and those of other four TLD-100 not exposed to one by treating them with heat and irradiating them, which are commonly used as thermoluminescent dosimeter, in the same condition. As the result of the experiment, regarding the electrons captured by irradiation, some of the electrons of lower traps were combined with positive holes of valence band through the exposure to a magnetic field, and the peak size decreased by 48%. The reduction in the size of the lower traps caused the TLD-100 exposed to a magnetic field to display a low level of dose. In addition, low traps estimated activation energies are 1.6 eV and 1.5 eV.

A Study on the Factors of Spatial Scattered Ray Occurrence in the X-ray Radiography Room (엑스선 촬영실의 공간산란선 발생 인자에 관한 연구)

  • Na, Soo-Kyung;Han, Sang-Hyo
    • Journal of radiological science and technology
    • /
    • v.32 no.4
    • /
    • pp.393-399
    • /
    • 2009
  • In this study, we measured the dose distribution of scattered ray in X-ray radiography room using an ion chamber and examined the dependency of scattered ray content on the scattered ray source and exposure condition. To study the factors of scattered ray occurrence in the acryl phantom, we measured the change in the scatted ray content according to the X-ray tube voltage (40~140 kV) and the field size ($10{\times}10\;cm^2$, $20{\times}20\;cm^2$, $35{\times}35\;cm^2$). For the $35{\times}35\;cm^2$ field size, the side-scattering rate ranged from 3.1% to 14.5%. The scattered ray contributions of the phantom, collimator, X-ray tube and wall were also measured. The scattered ray contribution of the phantom was higher than 95.4% for the entire tube voltage, and those of the collimator, X-ray tube and wall were 2.6%, 1.3% and 0.7%, respectively.

  • PDF