• Title/Summary/Keyword: Radiation efficiency

Search Result 1,231, Processing Time 0.026 seconds

A Study on the Combustion Characteristics and Radiation Efficiency of Metal Fiber Burners (메탈 화이버 버너에서의 연소 특성 및 복사 효율에 관한 실험적 연구)

  • Park, Ju-Won;Chung, Tae-Yong;Shin, Dong-Hoon
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.1
    • /
    • pp.27-33
    • /
    • 2006
  • Radiant burners are applicable to drying, preheating and curing in materials manufacturing processes. Radiation efficiency is one of the important performance criteria for these burners. The wide variation in reported radiation efficiencies are partly due to the differences in the measurement techniques. In the present work, water cooled radiant heat flux meter was used to measure radiant heat flux from a metal fiber mat burner. Non-contact type thermometer was also utilized to measure the surface temperature of the burner. Combustion gas was measured by gas analyzers. According to the thermal loads and stoichiometric ratios, radiant heat transfer ratio and combustion performance were discussed here in.

  • PDF

Effects of Gamma Ray Irradiation on the Struvite Crystallization of Livestock Wastewater (축산폐수를 이용한 스트러바이트 합성에 감마선 조사가 미치는 영향)

  • Yoo, Byeong-Hak;Jo, Seong-Hui;Lee, Myun-Joo;Kim, Tak-Hyun
    • Journal of Radiation Industry
    • /
    • v.4 no.4
    • /
    • pp.313-317
    • /
    • 2010
  • The struvite crystallization was applied to remove $NH_4{^+}$ in livestock wastewater. The ammonium ions can be very toxic to the aquatic creatures. In this experiments, the livestock wastewater from Gongju livestock wastewater treatment plant was used. The behaviors of various parameters such as pH, mole ratio of $Mg^{2+}$ : $NH_4{^+}$ : $PO{_4}^{3-}$ and reaction temperature for struvite crystallization of livestock wastewater and the effect of gamma ray irradiation were evaluated. As results, for the pH variation, the $NH_4{^+}$ removal efficiency showed the highest, 88%, at pH 9~9.25. The removal efficiency of $NH_4{^+}$, $Mg^{2+}$ and $PO{_4}^{3-}$ was showed highest when same molar ratio of $Mg^{2+}$ and $PO{_4}^{3-}$ were applied. The $NH_4{^+}$ removal efficiency showed 82% at $7^{\circ}C$, and 90% at $30^{\circ}C$ with temperature. When the wastewater was irradiated with 20 kGy of gamma ray, $NH_4{^+}$ was removed as much as 83%.

A PRACTICAL LOOK AT MONTE CARLO VARIANCE REDUCTION METHODS IN RADIATION SHIELDING

  • Olsher Richard H.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.225-230
    • /
    • 2006
  • With the advent of inexpensive computing power over the past two decades, applications of Monte Carlo radiation transport techniques have proliferated dramatically. At Los Alamos, the Monte Carlo codes MCNP5 and MCNPX are used routinely on personal computer platforms for radiation shielding analysis and dosimetry calculations. These codes feature a rich palette of variance reduction (VR) techniques. The motivation of VR is to exchange user efficiency for computational efficiency. It has been said that a few hours of user time often reduces computational time by several orders of magnitude. Unfortunately, user time can stretch into the many hours as most VR techniques require significant user experience and intervention for proper optimization. It is the purpose of this paper to outline VR strategies, tested in practice, optimized for several common radiation shielding tasks, with the hope of reducing user setup time for similar problems. A strategy is defined in this context to mean a collection of MCNP radiation transport physics options and VR techniques that work synergistically to optimize a particular shielding task. Examples are offered in the areas of source definition, skyshine, streaming, and transmission.

Estimation of Total Acoustic Radiation Power of Submerged Circular Cylindrical Structure Using Surface Vibration Velocity (접수 원통형 구조물의 표면 진동속도를 이용한 총 방사음향파워 계산)

  • Han, Seungjin;Lee, Jongju;Kang, Myunghwan;Bae, Sooryong;Jung, Woojin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.236-239
    • /
    • 2014
  • Most naval underwater weapon system can be simplified to a circular cylindrical structure which has vibrating machineries inside. In order to predict efficiently the total acoustic radiation power of cylindrical structure, surface velocity is measured and radiation efficiency of surface element is calculated. Then, they are substituted to the surface pressure in the simplified Helmholtz integral equation which assumes acoustic far-field and plane-wave approximation at the surface. Surface velocity and total acoustic radiation power for a submerged cylinder are measured in water-tank. In this example, it is found that total acoustic power output obtained from the prediction is in good agreement with that of measurement in mid-high frequency range.

  • PDF

Measuring Thermo-luminescence Efficiency of TLD-2000 Detectors to Different Energy Photons

  • Xie, Wei-min;Chen, Bao-wei;Han, Yi;Yang, Zhong-Jian
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.179-183
    • /
    • 2016
  • Background: As an important detecting device, TLD is a widely used in the radiation monitoring. It is essential for us to study the property of detecting element. The aim of this study is to calculate the thermo-luminescence efficiency of TL elements. Materials and Methods: A batch of thermo-luminescence elements were irradiated by the filtered X-ray beams of average energies in the range 40-200 kVp, 662 keV $^{137}Cs$ gamma rays and then the amounts of lights were measured by the TL reader. The deposition energies in elements were calculated by theory formula and Monte Carlo simulation. The unit absorbed dose in elements by photons with different energies corresponding to the amounts of lights was calculated, which is called the thermo luminescent efficiency (${\eta}^{(E)}$). Because of the amounts of lights can be calculated by the absorbed dose in elements multiply ${\eta}^{(E)}$, the ${\eta}^{(E)}$ can be calculated by the experimental data (the amounts of lights) divided by absorbed dose. Results and Discussion: The deviation of simulation results compared with theoretical calculation results were less than 5%, so the absorbed dose in elements was calculated by simulation results in here. The change range of ${\eta}^{(E)}$ value, relative to 662 keV $^{137}Cs$ gamma rays, is about 30% in the energy range of 33 keV to 662 keV, is in accordance by the comparison with relevant foreign literatures. Conclusion: The ${\eta}^{(E)}$ values can be used for updating the amounts of lights that are got by the direct ratio assumed relations with deposition energy in TL elements, which can largely reduce the error of calculation results of the amounts of lights. These data can be used for the design of individual dosimeter which used TLD-2000 thermo-luminescence elements, also have a certain reference value for manufacturer to improve the energy-response performance of TL elements by formulation adjustment.

Reduction of radiated noise by eigen-property control (구조물의 고유특성 제어를 통한 방사소음 저감)

  • Choi, Sung-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.658-663
    • /
    • 2004
  • The interaction between a vibrating structure and a surrounding acoustic medium determines the acoustic power propagating into the far-field. A straightforward method to reduce the radiated power is to reduce the vibration of the structure. However it is more efficient to control the modes of the structure separately since each vibration mode of the structure has different radiation efficiency. An efficient method to reduce the sound radiation in the low frequency region is proposed by reducing the radiation efficiency of the structure.

  • PDF

Assessment of Applicability of Portable HPGe Detector with In Situ Object Counting System based on Performance Evaluation of Thyroid Radiobioassays

  • Park, MinSeok;Kwon, Tae-Eun;Pak, Min Jung;Park, Se-Young;Ha, Wi-Ho;Jin, Young-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.2
    • /
    • pp.83-90
    • /
    • 2017
  • Background: Different cases exist in the measurement of thyroid radiobioassays owing to the individual characteristics of the subjects, especially the potential variation in the counting efficiency. An In situ Object Counting System (ISOCS) was developed to perform an efficiency calibration based on the Monte Carlo calculation, as an alternative to conventional calibration methods. The purpose of this study is to evaluate the applicability of ISOCS to thyroid radiobioassays by comparison with a conventional thyroid monitoring system. Materials and Methods: The efficiency calibration of a portable high-purity germanium (HPGe) detector was performed using ISOCS software. In contrast, the conventional efficiency calibration, which needed a radioactive material, was applied to a scintillator-based thyroid monitor. Four radioiodine samples that contained $^{125}I$ and $^{131}I$ in both aqueous solution and gel forms were measured to evaluate radioactivity in the thyroid. ANSI/HPS N13.30 performance criteria, which included the relative bias, relative precision, and root-mean-squared error, were applied to evaluate the performance of the measurement system. Results and Discussion: The portable HPGe detector could measure both radioiodines with ISOCS but the thyroid monitor could not measure $^{125}I$ because of the limited energy resolution of the NaI(Tl) scintillator. The $^{131}I$ results from both detectors agreed to within 5% with the certified results. Moreover, the $^{125}I$ results from the portable HPGe detector agreed to within 10% with the certified results. All measurement results complied with the ANSI/HPS N13.30 performance criteria. Conclusion: The results of the intercomparison program indicated the feasibility of applying ISOCS software to direct thyroid radiobioassays. The portable HPGe detector with ISOCS software can provide the convenience of efficiency calibration and higher energy resolution for identifying photopeaks, compared with a conventional thyroid monitor with a NaI(Tl) scintillator. The application of ISOCS software in a radiation emergency can improve the response in terms of internal contamination monitoring.

Prediction of Seasonal Variations on Primary Production Efficiency in a Eutrophicated Bay (부영양화해역의 내부생산효율에 대한 계절변동예측)

  • 이인철
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.53-59
    • /
    • 2001
  • The Primary Production of phytoplanktons produces organic matter in high concentration in eutrophicated Hakata Bay, Japan, even during the winter season in spite of low water temperature. Phytoplanktons are considered to have any biological capabilities to keep activities of photosynthesis under the unfavorable conditions, and this affects water quality of the bay. In this study, seasonal variations in primary production efficiency were predicted by using a simple box-type ecosystem model, which introduced the concept of efficiency for absorption of solar radiation energy in relation to growth of phytoplanktons under the low solar radiation intensity. According to the simulation result of primary production, it was organic pollution comes from dissolved organic carbon (DOC) throughout the year, DOC of which is originated from the primary production of phytoplanktons on biological response of the seasonal variation of ambient conditions.

  • PDF

New PDP cell designs for high luminous efficiency and radiation transport model in PDP

  • Yang, Sung-Soo;Shin, Seung-Won;Kim, Hyun-Chul;Lee, Jae-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.590-593
    • /
    • 2002
  • Using two- and three-dimensional fluid simulation codes, we have suggested several new plasma display panel (PDP) cell structures that have high luminous efficiency compared with conventional structure. To improve the luminance and discharge efficiency, we utilize long discharge path, lower electric field region, and reduction of power consumption by adding one auxiliary electrode or reducing the electrode area. Consequently, luminous efficiency increases about 1.8 times. Furthermore for the resonance radiation trapping effect in PDP system, we have described a self-consistent radiation transport model coupled with fluid simulation using modified Holstein's equation.

  • PDF

An Experimental Study on the Solar Collector Efficiency for Apartment Building (공동주택의 태양열 집열기 효율에 대한 실험적 연구)

  • Choi, Byungdo;Kim, Miyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.130.2-130.2
    • /
    • 2011
  • The application of solar energy in residential building is general and natural in today. And application methods of solar thermal energy is divided in two kind of form, single evacuated tube and flat-plate form. Then in this study, the efficiency of single evacuated tube and flat-plate system is compared by total and effective area considering the time receiving the solar radiation between 24 hours and the specific time(10:00~15:00). As a result of the experiment, single evacuated tube and flat-plate collector's efficiency is varied by the quantity of solar radiation. And especially, the flat-plate system is more affected by outdoor temperature. Therefore the application of solar thermal system should be considered the solar radiation and outdoor temperature.

  • PDF