• Title/Summary/Keyword: Radiation efficiency

Search Result 1,259, Processing Time 0.026 seconds

Characteristics of On-Board Broadband Antenna for 2.4 GHz Band (2.4 GHz 대역의 On-Board Broadband 안테나 특성)

  • Lee, Sang-Seok;Lee, Young-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.39-46
    • /
    • 2014
  • In this paper, to operate 2.4 GHz Inverted-L antenna with On-Board Broadband characteristics is proposed. The antenna was designed on the system board, the bandwidth by adjusting the reactance of the antenna that was formed common-mode and differential-mode on the antenna stubs has been improved. The system size is $80mm{\times}60mm$, the size of the antenna was limited to $30mm{\times}60mm$, the thickness of FR4 dielectric substrate is 0.8 mm, FR4 dielectric constant 4.4 is used. The experimental results, the bandwidth from 17.2 to 24.1 %, the gain is 3.01~4.71 dB, omni-directional radiation pattern characteristics were obtained. By a mobile terminal design applying the results of the paper, the handset's price competitiveness and production efficiency can be improved.

Hydrological Analysis in Soyanggang-dam Watershed Using SLURP Model (SLURP 모형을 이용한 유출수문분석 - 소양강댐 유역을 대상으로 -)

  • Lim, Hyuk-Jin;Kwon, Hyung-Joong;Jang, Cheol-Hee;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.8
    • /
    • pp.631-641
    • /
    • 2004
  • The objective of this study is to test the applicability of SLURP (Semi-distributed Land Use-based Runoff Process) on Soyanggang-dam watershed. SLURP model is a conceptual semi-distributed form model that can be used to examine irrigation plan and the effects of proposed changes in water management within a basin or to see what effects external factors such as climate change or changing land cover might have on various water users. Topographical parameters were derived from DEM using TOPAZ and SLURPAZ. Monthly NDVIs were calculated from multi-temporal NOAA/AVHRR images during four years (1998 ∼ 2001). Weather elements (dew-point temperature, solar radiation, maximum/minimum temperature and relative humidify) were obtained from five meteorological stations within and near the study area. To simulate daily hydrograph during 1998 ∼ 2001, the model parameters of each land cover class were optimized by sensitivity analysis and SCE-UA method. Test result of SLURP was summarized by various statistics method (WMO volume error, Nash-Sutcliffe efficiency, mean error and coefficient of variation).

DEVELOPMENT OF LEAD SLOWING DOWN SPECTROMETER FOR ISOTOPIC FISSILE ASSAY

  • Lee, YongDeok;Park, Chang Je;Ahn, Sang Joon;Kim, Ho-Dong
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.837-846
    • /
    • 2014
  • A lead slowing down spectrometer (LSDS) is under development for analysis of isotopic fissile material contents in pyro-processed material, or spent fuel. Many current commercial fissile assay technologies have a limitation in accurate and direct assay of fissile content. However, LSDS is very sensitive in distinguishing fissile fission signals from each isotope. A neutron spectrum analysis was conducted in the spectrometer and the energy resolution was investigated from 0.1eV to 100keV. The spectrum was well shaped in the slowing down energy. The resolution was enough to obtain each fissile from 0.2eV to 1keV. The detector existence in the lead will disturb the source neutron spectrum. It causes a change in resolution and peak amplitude. The intense source neutron production was designed for ~E12 n's/sec to overcome spent fuel background. The detection sensitivity of U238 and Th232 fission chamber was investigated. The first and second layer detectors increase detection efficiency. Thorium also has a threshold property to detect the fast fission neutrons from fissile fission. However, the detection of Th232 is about 76% of that of U238. A linear detection model was set up over the slowing down neutron energy to obtain each fissile material content. The isotopic fissile assay using LSDS is applicable for the optimum design of spent fuel storage to maximize burnup credit and quality assurance of the recycled nuclear material for safety and economics. LSDS technology will contribute to the transparency and credibility of pyro-process using spent fuel, as internationally demanded.

Design of Variable Optical Attenuators Incorporating Large Core Polymer Waveguides (대형 코어 폴리머 광도파로를 이용한 가변 광감쇠기 설계)

  • Cho, Su-Hong;Oh, Min-Choel
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.254-260
    • /
    • 2005
  • By incorporating large core polymer waveguides, which have been developed for increased alignment tolerance in passive fiber attachment, highly efficient variable optical attenuators are proposed. In order to find optimum device structures, 3-dimensional beam propagation method (BPM) simulations are performed. Heat distribution over the polymer film is calculated to find the 3-dimensional index profile data for the BPM simulation. Due to the small index contrast between the core and cladding materials in the large core waveguide, heat-induced radiation occurs for small heating power. While the ordinary VOA needs the temperature to change over $150^{\circ}C$ for 20 dB attenuation, the large core VOA requires only $70^{\circ}C$. In addition to the merit of passive fiber attachment, the proposed VOA has enhanced attenuation efficiency for the lower temperature change.

Analysis on Thermal Performance of BIPV in Spandrel (스펜드럴부 적용 BIPV 모듈의 열 특성 분석)

  • Kim, Ha-Ryeon;Kim, Jin-Hee;Kang, Gi-Hwan;Yu, Gwon-Jong;Kim, Jun-Tae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.364-369
    • /
    • 2011
  • Recently, the cases of BIPV(Building-integrated Photovoltaic) have been increased with interest in renewable energy application for buildings. PV System in building can perform a variety of roles as an energy supplier, exterior materials, aesthetic element and etc. To apply PV modules in buildings, various factors should be considered, such as the installation angle and orientation of PV module, shading, and temperature. The temperature of PV modules that are attached to building surfaces especially is one of the most important factors, as it affects both the electrical efficiency of a PV module and the energy load in a building. BIPV modules designed as finished material for spandrels are presented in this paper. The purpose of this study is to analysis on the thermal performance characteristics of BIPV modules. This study dealt with different types of BIPV modules depending on the backside material, such as clear glass and backsheet. The analysis of monitoring data shows that the PV module temperature was closely related to the solar radiation on the BIPV module surface, and the BIPV used at the backside also had an effect on the PV module temperature that in turn determines its thermal performance.

  • PDF

Design of Thomson Scattering System Using VPH Grating for Plasma Processing

  • Joa, Sang-Beom;Ko, Min-Guk;Kang, In-Je;Yang, Jong-Keun;Yu, Yong-Hun;Lee, Heon-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.525-525
    • /
    • 2013
  • Low temperature plasma diagnosis is one of the big issues in laboratory scale or processing industry. One of the most powerful techniques of plasma diagnostics is the use of the scattering of electromagnetic radiation from the plasma. Electron temperature and density are important parameters for understanding the information of plasmas in the plasma processing industry. Laser scattering experiments on plasma can provide a substantial amount of information about plasma parameters such as the electron density ne, the electron temperature Te, and the neutral density nn and temperature Tn. Thomson scattering spectroscopy is used several method, in accordance with detector type. Commonly, Thomson scattering is used several notch filter to separate expanded wavelength. Since using a spectrometer with surface relief grating or notch filter, the system of the measurement will be complicated and bigger. In this study, using VPHG (Volume Phase Holographic Grating) in order to install the simple and cheap system. VPHG has the advantage of the system installation, because it can be Transmission Type. The diffraction efficiency and dispersion angle of VPHG is higher than the surface relief grating relatively. For a wavelength and bandwidth selection, Using a slit or mask to select a rejection wavelength instead of notch filter.

  • PDF

Infrared Assisted Freeze-Drying (IRAFD) to Produce Shelf-Stable Insect Food from Protaetia brevitarsis (White-Spotted Flower Chafer) Larva

  • Khampakool, Apinya;Soisungwan, Salinee;You, SangGuan;Park, Sung Hee
    • Food Science of Animal Resources
    • /
    • v.40 no.5
    • /
    • pp.813-830
    • /
    • 2020
  • In this study, the potential of infrared assisted freeze-drying (IRAFD) was tested for the production of shelf-stable edible insects: Protaetia brevitarsis larva (larva of white-spotted flower chafer). The IRAFD system was customized using an infrared lamp, K-type thermocouple, controller, and data acquisition system. The infrared lamp provided the sublimation energy for rapid freeze-drying (FD). The IRAFD conditions were continuous IRAFD-5.0 kW/㎡ and IRAFD-5.0 kW/㎡ at different weight reduction (WR) (10%, 20%, and 30%). The continuous IRAFD reduced the drying time to 247 min compared to the 2,833 min duration of FD (p<0.05). The electrical energy could be reduced by more than 90% through infrared radiation during FD (p<0.05). The Page model resulted in the best prediction among the tested drying kinetic models. In terms of quality, IRAFD showed significantly lower hardness, chewiness, and higher protein levels than hot air drying and FD (p<0.05). IRAFD better preserved the glutamic acid (6.30-7.29 g/100 g) and proline (3.84-5.54 g/100 g). The external product appearance after IRAFD exhibited more air pockets and volume expansion, which might result in a good consumer appeal. In conclusion, this study reports the potential of IRAFD in producing shelf-stable and value-added edible insects.

Dynamic Analysis of Offshore Structures Considering External Fluid-Structure Interaction (외부유체-구조물의 상호작용을 고려한 해양구조물의 동적해석)

  • Hwang, Chul-Sung;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.271-281
    • /
    • 2005
  • The effects of radiation damping is used to compensate the truncated boundary which is relatively close to the structure-fluid interface in the fluid element surrounding the submerged structures. An efficient ring element is presented to model the shell and fluid element which fully utilizes the characteristics of the axisymmetry. The computational model uses the technique which separate the meridional shape and circumferential wave mode and gets similar result with the exact solution in the eigenvalues and the earthquake analysis. The fluid-structure interaction techniques is developed in the finite element analysis of two dimensional problems using the relations between pressure, nodal unknown acceleration and added mass assuming the fluid to be invicid, incompressible and irrotational. The effectiveness and efficiency of the technique is demonstrated by analyzing the free vibration and seismic analysis using the added mass matrix considering the structural deformation effect.

Numerical Analysis of Rail Noise Regarding Surface Impedance of Ground by Using Wavenumber Domain Finite and Boundary Elements (지면 임피던스를 고려한 레일 방사 소음의 파수영역 유한요소/경계요소 해석)

  • Ryue, Jungsoo;Jang, Seungho
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.4
    • /
    • pp.289-300
    • /
    • 2015
  • An important source of noise from railways is rolling noise caused by wheel and rail vibrations induced by acoustic roughness at the wheel-rail contact. In conventional approaches to predicting rail noise, the rail is regarded as placed in a free space so that the reflection from the ground is not included. However, in order to predict rail noise close to the rail, the effect of the ground should be contained in the analysis. In this study the rail noise reflected from the ground is investigated using the wavenumber domain finite element and boundary element methods. First, two rail models, one using rail attached to the rigid ground and one using rail located above rigid ground, are considered and examined to determine the rigid ground effect in terms of the radiation efficiency. From this analysis, it was found that the two models give considerably different results, so that the distance between the rail and the ground is an important factor. Second, an impedance condition was set for the ground and the effect of the ground impedance on the rail noise was evaluated for the two rail models.

Dynamic Boundary Element Analysis of Underground Structures Using Multi-Layered Half-Plane Fundamental Solutions (2차원 다층 반무한해를 이용한 지하구조계의 동적 경계요소 해석)

  • 김문겸;이종우;조성용
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.4
    • /
    • pp.59-68
    • /
    • 1997
  • In analysis of underground structures, the effects of artificial boundary conditions are considered as one of the major reasons for differences from experimental results. These phenomena can be overcome by using the boundary elements which satisfy the multi-layered half space conditions. The fundamental solutions of multi-layered half-space for boundary element method is formulated satisfying the transmission and reflection of waves at each layer interface and radiation conditions at bottom layer. The governing equations can be obtained from the displacements at each layer which are expressed in terms of harmonic functions. All types of waves can be included using the complete response from semi-infinite integrals with respect to horizontal wavenumbers using expansion of Fourier series and Hankel transformation. Two dimensional Green's functions are derived from cylindrical Navier equations and potentials performing infinite integration in y-direction. In this case, it is effective to transform into two dimensional problem using semi-analytical integration and sinusoidal Bessel function. Some verifications are given to show the accuracy and efficiency of the developed method, and numerical examples to demonstrate the dynamic behavior of underground with various properties.

  • PDF