• Title/Summary/Keyword: Radiation distribution image

Search Result 177, Processing Time 0.022 seconds

Development of Qualitative Evaluation of Medical Radiation Protective Apron (의료 방사선 방호용 앞치마의 정성적 평가법 개발)

  • Lim, Hui-Gyeom;Kim, Sang-Hyun;Kim, Tae-Hyung;So, Woon Young;Lee, Tae Hui;Kim, Seung Chul;Kim, Jin-Tae
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.453-460
    • /
    • 2017
  • This study proposes effective quality control and maintenance method by developing a new qualitative evaluation method of apron for medical radiation protection. As an experimental material, one of 0.45 mm lead and 100 of 0.45 mm Pb aprons were used and irradiated under the conditions of a tube voltage of 75 kVp and a tube current of 12.5 mAs to obtain an image. and using the Image J program, PSNR values were compared and analyzed. The results showed that there were 40 aprons (less than 11dB), 55 aprons (less than 11dB, less than 30dB), and 5 aprons (30dB or more). In addition, the dose showed a normal distribution for the apron, and 5 aprons with PSNR less than 11dB and 30dB or more were selected and divided into 8 zones, and these groups were statistically significant.

Verification of Mechanical Leaf Gap Error and VMAT Dose Distribution on Varian VitalBeamTM Linear Accelerator

  • Kim, Myeong Soo;Choi, Chang Heon;An, Hyun Joon;Son, Jae Man;Park, So-Yeon
    • Progress in Medical Physics
    • /
    • v.29 no.2
    • /
    • pp.66-72
    • /
    • 2018
  • The proper position of a multi-leaf collimator (MLC) is essential for the quality of intensity-modulated radiation therapy (IMRT) and volumetric modulated arc radiotherapy (VMAT) dose delivery. Task Group (TG) 142 provides a quality assurance (QA) procedure for MLC position. Our study investigated the QA validation of the mechanical leaf gap measurement and the maintenance procedure. Two $VitalBeam^{TM}$ systems were evaluated to validate the acceptance of an MLC position. The dosimetric leaf gaps (DLGs) were measured for 6 MV, 6 MVFFF, 10 MV, and 15 MV photon beams. A solid water phantom was irradiated using $10{\times}10cm^2$ field size at source-to-surface distance (SSD) of 90 cm and depth of 10 cm. The portal dose image prediction (PDIP) calculation was implemented on a treatment planning system (TPS) called $Eclipse^{TM}$. A total of 20 VMAT plans were used to confirm the accuracy of dose distribution measured by an electronic portal imaging device (EPID) and those predicted by VMAT plans. The measured leaf gaps were 0.30 mm and 0.35 mm for VitalBeam 1 and 2, respectively. The DLG values decreased by an average of 6.9% and 5.9% after mechanical MLC adjustment. Although the passing rates increased slightly, by 1.5% (relative) and 1.2% (absolute) in arc 1, the average passing rates were still within the good dose delivery level (>95%). Our study shows the existence of a mechanical leaf gap error caused by a degenerated MLC motor. This can be recovered by reinitialization of MLC position on the machine control panel. Consequently, the QA procedure should be performed regularly to protect the MLC system.

Quality Assurance of Patients for Intensity Modulated Radiation Therapy (세기조절방사선치료(IMRT) 환자의 QA)

  • Yoon Sang Min;Yi Byong Yong;Choi Eun Kyung;Kim Jong Hoon;Ahn Seung Do;Lee Sang-Wook
    • Radiation Oncology Journal
    • /
    • v.20 no.1
    • /
    • pp.81-90
    • /
    • 2002
  • Purpose : To establish and verify the proper and the practical IMRT (Intensity--modulated radiation therapy) patient QA (Quality Assurance). Materials and Methods : An IMRT QA which consists of 3 steps and 16 items were designed and examined the validity of the program by applying to 9 patients, 12 IMRT cases of various sites. The three step OA program consists of RTP related QA, treatment information flow QA, and a treatment delivery QA procedure. The evaluation of organ constraints, the validity of the point dose, and the dose distribution are major issues in the RTP related QA procedure. The leaf sequence file generation, the evaluation of the MLC control file, the comparison of the dry run film, and the IMRT field simulate image were included in the treatment information flow procedure QA. The patient setup QA, the verification of the IMRT treatment fields to the patients, and the examination of the data in the Record & Verify system make up the treatment delivery QA procedure. Results : The point dose measurement results of 10 cases showed good agreement with the RTP calculation within $3\%$. One case showed more than a $3\%$ difference and the other case showed more than $5\%$, which was out side the tolerance level. We could not find any differences of more than 2 mm between the RTP leaf sequence and the dry run film. Film dosimetry and the dose distribution from the phantom plan showed the same tendency, but quantitative analysis was not possible because of the film dosimetry nature. No error had been found from the MLC control file and one mis-registration case was found before treatment. Conclusion : This study shows the usefulness and the necessity of the IMRT patient QA program. The whole procedure of this program should be peformed, especially by institutions that have just started to accumulate experience. But, the program is too complex and time consuming. Therefore, we propose practical and essential QA items for institutions in which the IMRT is performed as a routine procedure.

Effectiveness Evaluation of Scanogram Using Longbone Detector (Longbone 검출기를 이용한 Scanogram의 유효성 평가)

  • Jang, Su-han;Heo, Ji-eun
    • Journal of radiological science and technology
    • /
    • v.43 no.4
    • /
    • pp.235-242
    • /
    • 2020
  • Scanogram is that combine several practical images into one image to observation. So it is an important consideration in many clinical situation such as iliac measurement, leg alignment measurement and Scoliosis. Currently, scanogram examinations are mainly conducted for children and elderly patients. In this study, in order to apply the longbone detector to children or elderly patients who are difficult to cooperate with, we compared the longbone detector from D equipment with the G equipment discovery 656 Puls equipment in reproducibility of images, distribution of irradiation dose, scattering dose, irradiation time and image acquisition time. D equipment took more than twice as much time as G equipment. The scattered dose generated about 50% more G equipment than D equipment. In the whole spine scanogram and the measurement length of the lower leg, D equipment was also measured longer than G equipment. However, both methods did not show much difference from the CT scanogram, so there was no problem in measurement. The height of the thyroid radiation dose of G equipment was produced more radiation than D equipment. However, the longbone detector deviated from the x-ray center line relative to the tube rotation method, and was measured lower by the directionality of the measuring instrument, so that the error could not be corrected. In the conclusion of study, using the longbone detector is excellent for applying to children or elderly patients to reduce scattering dose. However, using CR may be useful to normal patients. Because, the image quality may deteriorate due to an imbalance of dose difference in thickness depending on the body part. So, it is useful to using a compensation filter or tube rotation method when we take a whole spine scanogram.

The Study on Interpretation of the Scatter Degradation Factor using an additional Filter in a Medical Imaging System (의료 영상 시스템에서 부가 필터를 이용한 산란 열화 인자의 해석에 관한 연구)

  • Kang, Sang Sik;Kim, Kyo Tae;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.589-596
    • /
    • 2019
  • X-rays used for diagnosis have a continuous energy distribution. However, photons with low energy not only reduce image contrast, but also contribute to the patient's radiation exposure. Therefore, clinics currently use filters made of aluminum. Such filters are advantageous because they can reduce the exposure of the patient to radiation. However, they may have negative effects on imaging quality, as they lead to increases in the scattered dose. In this study, we investigated the effects of the scattered dose generated by an aluminum filter on medical image quality. We used the relative standard deviation and the scatter degradation factor as evaluation indices, as they can be used to quantitatively express the decrease in the degree of contrast in imaging. We verified that the scattered dose generated by the increase in the thickness of the aluminum filter causes degradation of the quality of medical images.

A Study on the Comparative Analysis of Images and Doses According to Tube Orientation During Anterior-Posterior Axial Projection Examination of the Skull (머리뼈 전-후 축 방향검사 시 Tube 방향설정에 따른 표면선량과 영상분석에 관한 연구)

  • Jeong, Sung-Hun;Yoo, Je-hyeon;Lim, Cheong-Hwan
    • Journal of radiological science and technology
    • /
    • v.44 no.4
    • /
    • pp.301-306
    • /
    • 2021
  • The skull has peripheral organs such as the crystalline lens and thyroid gland, which are highly radiosensitive, but the examination is performed without considering the uneven dose distribution due to the heel effect at the time of the current Skull Town's examination. However, no studies have been conducted on the exposure dose of surrounding organ tissues due to the difference in image density due to the heel effect and the non-uniformity of the dose. Using the cathode (-) and anode (+) set on the Tube to measure the scattered radiation along the Tube direction as a guide, change 30° and 37° in the cathode direction and 30° and 37° in the anode direction. It was given and investigated 5 times to obtain scattered radiation. image measurements were SNR, PSNR, RMSE, and MAE. Measurement results Measurement results of surrounding organ doses when the Tube direction was 30° and 37° The dose was low when the direction was cathodic in all organs (p<0.000). Both cathodes were higher in the image measurements(p<0.04). Continuous research may be needed for diagnostically valuable imaging and minimization of patient exposure dose.

Clinical Implementation of 3D Printing in the Construction of Patient Specific Bolus for Photon Beam Radiotherapy for Mycosis Fungoides

  • Kim, Sung-woo;Kwak, Jungwon;Cho, Byungchul;Song, Si Yeol;Lee, Sang-wook;Jeong, Chiyoung
    • Progress in Medical Physics
    • /
    • v.28 no.1
    • /
    • pp.33-38
    • /
    • 2017
  • Creating individualized build-up material for superficial photon beam radiation therapy at irregular surface is complex with rice or commonly used flat shape bolus. In this study, we implemented a workflow using 3D printed patient specific bolus and describe our clinical experience. To provide better fitted build-up to irregular surface, the 3D printing technique was used. The PolyLactic Acid (PLA) which processed with nontoxic plant component was used for 3D printer filament material for clinical usage. The 3D printed bolus was designed using virtual bolus structure delineated on patient CT images. Dose distributions were generated from treatment plan for bolus assigned uniform relative electron density and bolus using relative electron density from CT image and compared to evaluate the inhomogeneity effect of bolus material. Pretreatment QA is performed to verify the relative electron density applied to bolus structure by gamma analysis. As an in-vivo dosimetry, Optically Stimulated Luminescent Dosimeters (OSLD) are used to measure the skin dose. The plan comparison result shows that discrepancies between the virtual bolus plan and printed bolus plan are negligible. (0.3% maximum dose difference and 0.2% mean dose difference). The dose distribution is evaluated with gamma method (2%, 2 mm) at the center of GTV and the passing rate was 99.6%. The OSLD measurement shows 0.3% to 2.1% higher than expected dose at patient treatment lesion. In this study, we treated Mycosis fungoides patient with patient specific bolus using 3D printing technique. The accuracy of treatment plan was verified by pretreatment QA and in-vivo dosimetry. The QA results and 4 month follow up result shows the radiation treatment using 3D printing bolus is feasible to treat irregular patient skin.

3-D Radiosurgery Planning Using Personal Computer (Personal Computer를 이용한 3차원적 뇌정위적 방사선 치료계획)

  • 서태석;서덕영;박찬일;하성환;강위생
    • Progress in Medical Physics
    • /
    • v.3 no.1
    • /
    • pp.63-69
    • /
    • 1992
  • Recently, stereotactic radiosurgery plan is required with the information of 3-D image and dose distribution. The purpose of this research is to develop 3-D radiosurgery planning system using personal computer. The procedure of this research is based on three steps. The first step is to input the image information of the patient obtained from CT or MR scan into personal computer through on-line or digitizer. The position and shape of target are also transferred into computer using Angio or CT localization. The second step is to compute dose distribution on image plane, which is transformed into stereotactic frame coordinate. and to optimize dose distribution through the selection of optimal treatment parameters. The third step is to display both isodose distribution and patient image simultaneously using superimpose technique. This prototype of radiosurgery planning system was applied recently for several clinical cases. It was shown that our planning system is fast, accurate and efficient while making it possible to handle various kinds of image modelities such as angio, CT and MRI. It is also possible to develop 3-D planning system in radiation therapy using beam's eye view or CT simulation in future.

  • PDF

Usability assessment of thermoplastic Bolus for skin VMAT radiotherapy (피부 병변에 대한 VMAT 치료 시 열가소성 bolus의 유용성 평가: case review)

  • Kim, Min Soo;Kim, Joo Ho;Shin, Hyun Kyung;Cho, Min Seok;Park, Ga Yeon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.85-92
    • /
    • 2020
  • Purpose: To find out the advantages of thermoplastic bolus compared to conventional bolus, which is mainly used in clinical practice, We evaluated Two cases in terms of dose and location reproducibility to assess Usability of thermoplastic Bolus for skin VMAT radiotherapy. Materials and Methods: Two patient's treated with left breast skin lesion were simulated using thermoplastic Bolus and planned with 2arc VMAT. the prescription dose was irradiated to 95% or more of the target volume. We evaluated The reproducibility of the bolus position by measuring the length of the air gap in the CBCT (Cone Beam CT) image. to evaluate dose reproducibility, we compared The dose distribution in the plan and CBCT and measured in vivo for patient 2. Results: The difference between the air gap in patient 1's simulation CT and the mean air gap (M1) during 10 treatments in the CBCT image was -0.42±1.24mm. In patient 2, the difference between the average air gap between the skin and the bolus (M2) during 14 treatments was -1.08±1.3mm, and the air gap between the bolus (M3) was 0.49±1.16. The difference in the dose distribution between Plan CT and CBCT was -1.38% for PTV1 D95 and 0.39% for SKIN (max) in patient 1. In patient 2, PTV1 D95 showed a difference of 0.63% and SKIN (max) -0.53%. The in vivo measurement showed a difference of -1.47% from the planned dose. Conclusion: thermoplastic Bolus is simpler and takes less time to manufacture compared to those produced by 3D printer. Also compared to conventional bolus, it has high reproducibility in the set-up side and stable results in terms of dose delivery.

Impact of Respiratory Motion on Breast Cancer Intensity-modulated Radiation Therapy (유방암 세기조절방사선치료에서의 호흡운동 영향)

  • Chung, Weon Kuu;Chung, Mijoo;Shin, Dong Oh;Kim, Dong Wook
    • Progress in Medical Physics
    • /
    • v.27 no.2
    • /
    • pp.93-97
    • /
    • 2016
  • In this study, we evaluate the effect of respiration on the dose distribution in patient target volume (PTV) during intensity-modulated radiation therapy (IMRT) and research methods to reduce this impact. The dose distributions, homogeneity index (HI), coverage index (CVI), and conformity index of the PTV, which is calculated from the dose-volume histogram (DVH), are compared between the maximum intensity projection (MIP) image-based plan and other images at respiration phases of 30%, 60% and 90%. In addition, the reducing effect of complication caused by patient respiration is estimated in the case of a bolus and the expended PTV on the skin. The HI is increased by approximately twice, and the CVI is relatively decreased without the bolus at other respiration phases. With the bolus and expended PTV, the change in the dose distribution of the PTV is relatively small with patient respiration. Therefore, the usage of the bolus and expended PTV can be considered as one of the methods to improve the accuracy of IMRT in the treatment of breast cancer patients with respiratory motion.