• Title/Summary/Keyword: Radiation detection backpack

Search Result 1, Processing Time 0.015 seconds

Development of a wireless radiation detection backpack using array silicon-photomultiplier (SiPM)

  • Kim, Jeong Ho;Back, Hee Kyun;Joo, Koan Sik
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.456-460
    • /
    • 2020
  • In this research, a radiation detection backpack to be used discreetly or by a wide range of users was developed using array silicon-photomultiplier (SiPM) and CsI (Tl), and its characteristics were evaluated. The R-squared value, which indicates the responsiveness of a detector based on the signal intensity, was determined to be 0.981, indicating a good linear responsivity. The energy resolutions for gamma radiation energies of Co-57 (122 keV), Ba-133 (356 keV), Cs-137 (662 keV), and Co-60 (1332 keV) were found to be 13.40, 10.50, 6.77, and 3.16%, respectively. These results confirm good energy resolution characteristics. Furthermore, in the case of mixed sources, the gamma radiation peaks were readily distinguishable, and the R-squared value for energy linearity was calculated to be 0.999, demonstrating an exceptional energy linearity. Further research based on the results of this study would enable the commercialization of lightweight SiPM-based wireless radiation detection backpacks that can be used for longer durations by replacing the photomultiplier tube, which is mainly used as the optical sensor in existing radiation detection backpacks.