• Title/Summary/Keyword: Radiation curing

Search Result 62, Processing Time 0.029 seconds

Solar Energy Utilization in a Greenhouse Bulk Curing and Drying System(I) (Greenhouse Bulk건조기에 의한 태양열이용에 관한 연구 (제I보))

  • 진정의;이승철;이상하
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.2 no.1
    • /
    • pp.61-67
    • /
    • 1980
  • The greenhouse hulk curing and drying system utilizing the direct solar energy was tested to see how much fuel could be saved for curing flue-cured tobacco at the Daegu Experiment Station, Korea Tobacco Research Institute (North latitute: 35$^{\circ}$49'), in 1979. The structure consists of transparent fiberglass exterior, polyurethan boards covered with galvanized iron as the heat absorbers and insulation boards, air duct in which the air is introduced to the furnace room of bulk curing barn, and gravel heat storage system. All exterior surface of heat absorbers, air duct, and gravels were coated with black paint. The air temperature and total radiation were 20.5 to 35.5$^{\circ}C$ and 1004.2 to 1436.2 cal/$\textrm{cm}^2$ during the 3 replicated curing tests, respectively. The greenhouse bulk curing and drying system was able to cut fuel consumption by 25 percent compared with the conventional bulk curing barn. The maximum temperatures for the top absorber and the inlet air of the system were 89$^{\circ}C$ and 64$^{\circ}C$, respectively, and the average temperature of inlet air was higher than that of conventional one by 18$^{\circ}C$.

  • PDF

A Study on the Combustion Characteristics and Radiation Efficiency of Metal Fiber Burners (메탈 화이버 버너에서의 연소 특성 및 복사 효율에 관한 실험적 연구)

  • Park, Ju-Won;Chung, Tae-Yong;Shin, Dong-Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.13-18
    • /
    • 2006
  • Radiant burners are applicable to drying, preheating and curing in materials manufacturing processes. High radiation efficiency is one of the most important performance criteria for these burners. The wide variation in reported radiation efficiencies are partly due to the differences in the measurement techniques. In the present work, water cooled radiant heat flux meter was used to measure radiant heat flux from a metal fiber mat burner. Non-contact type thermometer was also utilized to measure the surface temperature of the burner. Combustion gas was measured by gas analyzers. According to the thermal loads and stoichiometric ratios, radiant heat transfer ratio and combustion performance were discussed here in.

  • PDF

A Study on the Combustion Characteristics and Radiation Efficiency of Metal Fiber Burners (메탈 화이버 버너에서의 연소 특성 및 복사 효율에 관한 실험적 연구)

  • Park, Ju-Won;Chung, Tae-Yong;Shin, Dong-Hoon
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.1
    • /
    • pp.27-33
    • /
    • 2006
  • Radiant burners are applicable to drying, preheating and curing in materials manufacturing processes. Radiation efficiency is one of the important performance criteria for these burners. The wide variation in reported radiation efficiencies are partly due to the differences in the measurement techniques. In the present work, water cooled radiant heat flux meter was used to measure radiant heat flux from a metal fiber mat burner. Non-contact type thermometer was also utilized to measure the surface temperature of the burner. Combustion gas was measured by gas analyzers. According to the thermal loads and stoichiometric ratios, radiant heat transfer ratio and combustion performance were discussed here in.

  • PDF

A New Evaluation Method of UV Curing Process by Using Electrical Properties (전기적 특성을 이용한 UV 경화 프로세스에 대한 새로운 평가방법)

  • Lee, Mun-Hag;Kim, Sung-Bin;Son, Se-Mo;Cheon, Jae-Kee
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.393-400
    • /
    • 2005
  • A novel evaluation method was investigated for measuring the ability of acid amplification of acid amplifier. The method was based on the measurement of conductivity change by the acid generation according to UV radiation. It was found that the decrease of conductivity was caused by photopolymerization of epoxy monomer during UV curing process of ink film and by the rate of UV curing. In this paper, the novel acid amplifiers were synthesized and measured thermal stability by means of DSC. It was found that mono-type acid amplifiers were more stable than di-type. It was possible to make the dynamical evaluation of the curing rate of UV curable ink in curing process by this method.

Heating Behavior of Silicon Carbide Fiber Mat under Microwave

  • Khishigbayar, Khos-Erdene;Seo, Jung-Min;Cho, Kwang-Youn
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.707-711
    • /
    • 2016
  • A small diameter of SiC fiber mat can produce much higher heat under microwave irradiation than the other types of SiC materials. Fabrication of high strength SiC fiber consists of iodine vapor curing on polycarbosilane precursor and heat treatment process. The curing stage of polycarbosilane fiber was maintained at $150-200^{\circ}C$ in a vacuum condition under the iodine vapor to fabricate a high thermal radiation SiC fiber. The structure and morphology of the fibers were characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TG) and scanning electron microscopy (SEM). In this study, the thermal properties of SiC fiber mats under microwave have been analyzed with an IR thermal camera and its image analyzer. The prepared SiC fiber mats radiated high temperature with extremely high heating rate up to $1100^{\circ}C$ in 30 seconds. The fabricated SiC fiber mats were not oxidized after the heat radiation process under the microwave irradiation.

Application of Gamma Irradiation for the Reduction of Residual Nitrite and Nitrosamine in Meat Products

  • Ahn, Hyun-Joo;Kim, Jae-Hun;Lee, Ju-Woon;Jo, Cheorun;Byun, Myung-Woo
    • Food Science of Animal Resources
    • /
    • v.24 no.4
    • /
    • pp.367-372
    • /
    • 2004
  • Nitrite, a curing agent of meat products, is precursors of carcinogenic N-nitrosamines during processing of meat products or under human stomach conditions as well as having its own toxicity. Some researches have been conducted to evaluate the effects of ionizing radiation on the reduction of residual nitrite and N-nitrosamines in an aqueous model system and cured meat products with different packaging methods during storage. These results showed that the gamma irradiation was effective in reducing the residual nitrite and N-nitrosamines in an aqueous model system as well as meat products. Especially, irradiation combined with vacuum or modified atmosphere packaging was more effective in nitrite and N-nitrosamines reduction than aerobic packaging during storage. The objective of this review is to introduce the irradiation technology for the application of reducing the residual nitrite and N-nitrosamine contents in meat products.

Fabrication and Characterization of C/SiC Composite by Electron Beam Curing (전자선 가교 방법을 이용한 탄소/탄화규소 복합재 제조 및 특성)

  • Shin, Jin-Wook;Jeun, Joon-Pyo;Kang, Phil-Hyun
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.575-580
    • /
    • 2009
  • Carbon fabric-reinforced silicon carbide composites (C/SiC) have attracted a considerable attention for high temperature structural application because of their outstanding oxidation resistance property and thermal shock resistance. In this study, we reported on the preparation of C/SiC composites by the polymer impregnation and pyrolysis (PIP) method. For this, polycarbosilane solution was impregnated into the carbon fabric and then cured by electron beam irradiation under argon atmosphere. Afterwards, the cured composite was pyrolyzed at $1300^{\circ}C$ for 1 h under argon atmosphere to produce the C/SiC composite. The porosity and density of the C/SiC composite were 13.5% and $2.44\;g/cm^3$, respectively, when the impregnation of the carbon fabric with the 30 wt% polycarbosilane solution conducted four times. In addition, in the isothermal experiment at $1500\;^{\circ}C$ in air for 5 h, the 95.9 wt% of the C/SiC composite was remained, indicating that the prepared C/SiC composite has a outstanding oxidation resistance.

Characterization of Epoxy Resin Containing Nano Clay Prepared by Electron Beam (전자선에 의해 제조된 나노 clay 함유 에폭시 수지의 특성)

  • Park, Jong-Seok;Lee, Seung-Jun;Lim, Youn-Mook;Jeong, Sung-In;Gwon, Hui-Jeong;Shin, Young-Min;Kang, Phil-Hyun;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.9 no.1
    • /
    • pp.9-13
    • /
    • 2015
  • Epoxy resin is widely used as aerospace, automobile, construction and electronics due to their good mechanical and electrical properties and environmental advantages. However, the inherent flammability of epoxy resin has limited its application in some field where good flame retardancy is required. Nano clay can enhance the properties of polymers such as flames retardancy and thermal stability. In this study, we have investigated the nanoclay filled epoxy composite, which has good flame retardancy while maintaining high mechanical properties. The cured epoxy resins were obtained using an electron beam curing process. The nano clays were dispersed in epoxy acrylate solution and mechanically stirred. The prepared mixtures were irradiated using an electron beam accelerator. The composites were characterized by gel content and thermal/mechanical properties. Moreover, the flammability of the composite was evaluated by limited oxygen index (LOI). The flame retardancy of nano clay filled epoxy composite was evidently improved.

Improving Curing Rate and Physical Properties of Korean Dendropanax Lacquer with Thermal and Photo Initiator by Dual Curing (이중경화법을 이용한 열개시제 및 광개시제가 배합된 황칠도료의 경화속도 촉진 및 물성향상 연구)

  • Hwang, Hyeon-Deuk;Moon, Je-Ik;Park, Cho-Hee;Kim, Hyun-Joong;Hwang, Baik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.333-340
    • /
    • 2010
  • The Korean Dendropanax lacquer, made from a natural resinous sap from Dendropanax orbifera Lev., was used as a golden and transparent varnish for the traditional artifacts (armor uits, helmets, arrowheads, etc.) to make them be brilliant golden color. The cured film of the acquer has excellent protective properties such as weatherability, water resistance, and nticorrosive. But, one of disadvantages is that takes a long time and much energy to fulfill curing the lacquer. The chemical constituents of the lacquer contained conjugated diene compounds s the photopolymerizable monomers. These monomers easily polymerized in sunlight to form olden-colored, hard-coating films in a short time. Photooxidation may be one of the most mportant reactions in the chemistry of the lacquer. Although the Korean Dendropanax Lacquer hould be dried to a thoroughly dry stage to achieve optimal film properties, curing with elevated emperatures may be required for the protracted curing time at atmospheric temperature. So we ntended to accelerate the curing rate of the lacquer by dual curing of thermal and radiation uring. The effect of thermal initiator on the thermal curing reaction was evaluated by monitoring he changes in double bond peak with FT-IR. Then the curing rate of the lacquer blended with hermal initiator and photoinitiator together was measured during dual curing using a RPT with V spot curing machine. Thermal initiator not only accelerated the curing rate but also improved he physical property. And the curing rate of the Korean Dendropanax lacquer was improved by ual curing method of thermal and UV curing. According to these results, the application area of he Korean Dendropanax lacquer could be expanded to surface coatings for electronic devices uch as mobile phones or electronics.

The Characteristics of Bonding for Thermo-plastic using Solar Energy (태양에너지를 이용한 열경화성 플라스틱 접합특성)

  • Kim, Ok-Sam;Kim, Il-Soo;Son, Joon-Sik;Seo, Joo-Hwan;Moon, Chae-Joo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.106-111
    • /
    • 2007
  • In this research work attempts were made to study the bonding of thermo-plastics with adhesives using solar radiation. In order to study the curing behaviour necessary experiments were conducted under varying conditions of temperature, exposure time and power of solar energy. The cured samples were then studied under the optical microscope before subjecting to tensile testing in order to study their mechanical properties of thermo-plastics. The fracture surfaces were further studied under the Scanning Electron Microscopy(SEM) in order to research the microstructural changes that are taken place during curing. In order to measure the performance of solar energy cured joints the parameters such as; bond strength, surface morphology, the microstructual changes, variation in properties of adhesives bonded joints are compared to that of specimen cured at ambient conditions and specimen cured using microwave techniques.