• 제목/요약/키워드: Radiation Theragnosis

검색결과 2건 처리시간 0.013초

Development of Drugs and Technology for Radiation Theragnosis

  • Jeong, Hwan-Jeong;Lee, Byung Chul;Ahn, Byeong-Cheol;Kang, Keon Wook
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.597-607
    • /
    • 2016
  • Personalized medicine is tailored medical treatment that targets the individual characteristics of each patient. Theragnosis, combining diagnosis and therapy, plays an important role in selecting appropriate patients. Noninvasive in vivo imaging can trace small molecules, antibodies, peptides, nanoparticles, and cells in the body. Recently, imaging methods have been able to reveal molecular events in cells and tissues. Molecular imaging is useful not only for clinical studies but also for developing new drugs and new treatment modalities. Preclinical and early clinical molecular imaging shows biodistribution, pharmacokinetics, mechanisms of action, and efficacy. When therapeutic materials are labeled using radioisotopes, nuclear imaging with positron emission tomography or gamma camera can be used to treat diseases and monitor therapy simultaneously. Such nuclear medicine technology is defined as radiation theragnosis. We review the current development of drugs and technology for radiation theragnosis using peptides, albumin, nanoparticles, and cells.

나노의학: 나노물질을 이용한 약물전달시스템과 나노입자의 표적화 (Nanomedicine: Drug Delivery Systems and Nanoparticle Targeting)

  • 윤혜원;강건욱;정준기;이동수
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제42권5호
    • /
    • pp.337-346
    • /
    • 2008
  • Applications of nanotechnology in the medical field have provided the fundamentals of tremendous improvement in precise diagnosis and customized therapy. Recent advances in nanomedicine have led to establish a new concept of theragnosis, which utilizes nanomedicines as a therapeutic and diagnostic tool at the same time. The development of high affinity nanoparticles with large surface area and functional groups multiplies diagnostic and therapeutic capacities. Considering the specific conditions related to the disease of individual patient, customized therapy requires the identification of disease target at the cellular and molecular level for reducing side effects and enhancing therapeutic efficiency. Well-designed nanoparticles can minimize unnecessary exposure of cytotoxic drugs and maximize targeted localization of administrated drugs. This review will focus on major pharmaceutical nanomaterials and nanoparticles as key components of designing and surface engineering for targeted theragnostic drug development.