• Title/Summary/Keyword: Radiation Protection Product

Search Result 72, Processing Time 0.03 seconds

Calibration of an $^{192}Ir$ Source Used for High Dose Rate RALS. (RALS에 장착한 Ir-192 선원의 강도측정에 대한 고찰)

  • Moon, Un-Chull
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.6 no.1
    • /
    • pp.56-60
    • /
    • 1994
  • In the past, brachytherapy was carried out mostly with radium or radon sources. Currently. use of artificially produced radionuclially produced radionuclides such as $^{137}Cs,\;^{192}Ir,\;^{198}Au,\;and\;^{125}I$ is rapidly increasing. Although electrons are often used as an alternative to interstitial implants, brachytherapy continues to remain an important mode of therapy, either alone or combined with external beam. The National Council on Radiation Protection and Measurements(NCRP) recommends that the strength of any ${\gamma}$ emitter should be specified directly in terms of exposure rate in air at a specified distance such as 1m. The air kerma strength is defined as the product of air kerma rate in 'free space' and the square of the disrance of the calibration point from the source center along the perpendicular bisector, i. e., $S_k=K_L{\times}L^2$. Where $S_K$ is the the air kerma strength and K is the air kerma rate at a specified distance L. (usually 1m). Recommended units for all kerma strength are ${\mu}Gym^{2}h^{-1}$.

  • PDF

Measurement and Analyses of Radiation -Assessment of Defected Fuel by Analysis of Reactor Coolant Activities- (방사선 측정 및 해석 연구 -원자로 냉각수중의 방사능해석에 의한 결함핵연료봉의 평가-)

  • Yang, Jae-Choon;Oh, Hi-Peel;Jun, Jae-Shik;Lee, Ho-Yon;Oh, Heon-Jin;Chung, Moon-Kyu;Park, Hae-Yong
    • Journal of Radiation Protection and Research
    • /
    • v.11 no.2
    • /
    • pp.139-145
    • /
    • 1986
  • An improved mothod of assessing fuel status by analyzsis of the fission product in the reactor coolant system is proposed. The release mechanism of specific fission products is established for determination of the coefficients in the equations which relate the radioactivities with the amount of defected fuel. Knock-out and migration models are employed in the formulation of the release mechanism. The influence of the tramp uranium is quantified. Sample calculations were made for KNU 1 reactor system using the I-131 and I-133 concentrations in the primary coolant. The estimated number of defected fuel pins in the third and sixth cycles appeared to be $9.34{\pm}1.13\;and\;0.294{\pm}0.092$, respectively.

  • PDF

Effect of Agricultural Countermeasures on Ingestion Dose Following a Nuclear Accident

  • Keum, Dong-Kwon;Jeong, Hyojoon;Jun, In;Lim, Kwang-Muk;Choi, Yong-Ho;Lee, So-Hyeon;Jung, Tae-Jong
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.1
    • /
    • pp.8-14
    • /
    • 2019
  • Background: Management of an agricultural food product system following a nuclear accident is indispensable for reducing radiation exposure due to ingestion of contaminated food. The present study analyzes the effect of agricultural countermeasures on ingestion dose following a nuclear accident. Materials and Methods: Agricultural countermeasures suitable for domestic farming environments were selected by referring to the countermeasures applied after the Fukushima accident in Japan. The avertable ingestion doses that could be obtained by implementing the selected countermeasures were calculated using the Korean Agricultural Countermeasure Analysis Program (K-ACAP) to investigate the efficiency of each countermeasure. Results and Discussion: Of the selected countermeasures, the management of crops was effective when radionuclide deposition occurred during the growing season of plants. Treatment by soil additive and topsoil removal was effective when deposition occurred during the nongrowing season of plants. The disposal of milk was not effective owing to the small contribution of milk to the overall ingestion dose. Clean feeding of livestock was effective when deposition occurred during the growing season of fodder plants such as pasture and rice-straw. Finally, the effect of food restriction increased with the soil deposition density of radionuclide. The practical effect of countermeasures was very small when the avertable ingestion dose was absolutely low. Conclusion: The agricultural countermeasures selected to reduce the radionuclide ingestion dose after a nuclear accident must be made appropriate by considering the accident situation, such as the soil deposition density of the radionuclide and the deposition date in relation to farming cycles.

A Study on Establishment of Essential Performance Evaluation Criteria for C-arm Computed Tomography (C-arm CT의 필수 성능평가 기준 마련을 위한 연구)

  • Kim, Eun-Hye;Park, Hye-Min;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.45 no.2
    • /
    • pp.127-134
    • /
    • 2022
  • In order to overcome the image quality limitations of the conventional C-arm, a flat panel detector (FPD) is used to enhance spatial resolution, detective quantum efficiency, frame rate, and dynamic range. Three-dimensional (3D) visualized information can be obtained from C-arm computed tomography (CT) equipped with an FPD, which can reduce patient discomfort and provide various medical information to health care providers by conducting procedures in the interventional procedure room without moving the patient to the CT scan room. Unlike a conventional C-arm device, a C-arm CT requires different basic safety and essential performance evaluation criteria; therefore, in this study, basic safety and essential performance evaluation criteria to protect patients, medical staff, and radiologists were derived based on International Electrotechnical Commission (IEC) standards, the Ministry of Food and Drug Safety (MFDS) standards in Korea, and the rules on the installation and operation of special medical equipment in Korea. As a result of the study, six basic safety evaluation criteria related to electrical and mechanical radiation safety (leakage current, collision protection, emergency stopping device, overheating, recovery management, and ingress of water or particulate matter into medical electrical (ME) equipment and ME systems: footswitches) and 14 essential performance evaluation criteria (accuracy of tube voltage, accuracy of tube current, accuracy of loading time, accuracy of current time product, reproducibility of radiation output, linearity and consistency in radiography, half layer value in X-ray equipment, focal size and collimator, relationship between X-ray field and image reception area, consistency of light irradiation versus X-ray irradiation, performance of the mechanical device, focal spot to skin distance accuracy, image quality evaluation, and technical characteristic of cone-beam computed tomography) were selected for a total of 20 criteria.

Development of Simple and Rapid Radioactivity Analysis for Thorium Series in the Products Containing Naturally Occurring Radioactive Materials (NORM) (천연방사성물질(NORM)을 함유한 가공제품 내 토륨계열 방사능 평가를 위한 간단/신속 분석법 개발)

  • Yoo, Jaeryong;Park, Seyoung;Yoon, Seokwon;Ha, Wi-Ho;Lee, Jaekook;Kim, Kwang Pyo
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.1
    • /
    • pp.71-79
    • /
    • 2016
  • Background: It is necessary to analyze radioactivity of naturally occurring radioactive materials (NORM) in products to ensure radiological safety required by Natural Radiation Safety Management Act. The pretreatments for the existing analysis methods require high technology and time. Such destructive pretreatments including grinding and dissolution of samples make impossible to reuse products. We developed a rapid and simple procedure of radioactivity analysis for thorium series in the products containing NORM. Materials and Methods: The developed method requires non-destructive or minimized pretreatment. Radioactivity of the product without pretreatment is initially measured using gamma spectroscopy and then the measured radioactivity is adjusted by considering material composition, mass density, and geometrical shape of the product. The radioactivity adjustment can be made using scaling factors, which is derived by radiation transport Monte Carlo simulation. Necklace, bracelet, male health care product, and tile for health mat were selected as representative products for this study. The products are commonly used by the public and directly contacted with human body and thus resulting in high radiation exposure to the user. Results and Discussion: The scaling factors were derived using MCNPX code and the values ranged from 0.31 to 0.47. If radioactivity of the products is measured without pretreatment, the thorium series may be overestimated by up to 2.8 times. If scaling factors are applied, the difference in radioactivity estimates are reduced to 3-24%. Conclusion : The developed procedure in this study can be used for other products with various materials and shapes and thus ensuring radiological safety.

Radiation Field in PWR Plants (PWR 발전소에서의 방사선장 특성)

  • Song, Myung-Jae;Kim, Hee-Keun;Kim, Bong-Hwan;Chang, Si-Young
    • Journal of Radiation Protection and Research
    • /
    • v.17 no.2
    • /
    • pp.61-70
    • /
    • 1992
  • Photon, neutron and beta radiation fields were measured at PWR plants which are the representative types of nuclear power plant operated in Korea. The photon energy spectra were measured at locations in the auxiliary building during operation period and in the containment vessel(C/V) during shutdown period using a portable gamma spectrometer with a HPGe detector. The distribution of average energy was found to range from 440 to 780 keV in the C/V and from 280 keV to 760 keV in the auxiliary building, respectively. The average neutron energy measured at the five locations around the operation deck in the C/V in operation using a BMSS (Bonner Multi-Sphere Spectrometer) ranged from 20 keV to 210 keV. A computer code, BUNKI was used to unfold the spectrum. The beta energy spectra in the C/V and in the auxiliary building in annual outage were determined using 14 smear samples taken from the highly contaminated areas. The analysis showed that the representative corrosion product, $^{60}Co$ made main contribution to the beta energy field.

  • PDF

The effect and stability of plant extract ingredient as uv absorber (자외선 흡수제로서의 식물추출성분의 안정성과 효과)

  • 김경동;이용두;박성순;윤성화;이석현
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.26 no.1
    • /
    • pp.41-58
    • /
    • 2000
  • Recently the harmfulness of W radiation is in creasing due to encironmental pollution. Environmental population may also play a role in global decrease of ozone layer, A major consequence of ozone depletion is increase in solar ultra violet radiation received at the earth's surface excessive exposure to W radiation cause a lot of problems in our skin. Plant extract that possess antioxidative activities has been reported to retard the oxidation process in product to which they have been added. Plant are alived under solar light. So it is expect the plants have so many protection mechanisms and UV absorbent ingredients against ultra violet radiation such as UVB, UVA. Plant extract which were flavonoids, alkaloids and others could be transformed into UV absorber by chemical modification. Therefore with the aim of finding alternative natural absorber that can safely be used in cosmetic, we have screened various extract for their UV absorbent effect. Thus, the cosmetic safety against human skin, antimicrobial effects and others could be improved by using the silicon.

  • PDF

Energy Spectrum Measurement of High Power and High Energy (6 and 9 MeV) Pulsed X-ray Source for Industrial Use

  • Takagi, Hiroyuki;Murata, Isao
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.93-99
    • /
    • 2016
  • Background: Industrial X-ray CT system is normally applied to non-destructive testing (NDT) for industrial product made from metal. Furthermore there are some special CT systems, which have an ability to inspect nuclear fuel assemblies or rocket motors, using high power and high energy (more than 6 MeV) pulsed X-ray source. In these case, pulsed X-ray are produced by the electron linear accelerator, and a huge number of photons with a wide energy spectrum are produced within a very short period. Consequently, it is difficult to measure the X-ray energy spectrum for such accelerator-based X-ray sources using simple spectrometry. Due to this difficulty, unexpected images and artifacts which lead to incorrect density information and dimensions of specimens cannot be avoided in CT images. For getting highly precise CT images, it is important to know the precise energy spectrum of emitted X-rays. Materials and Methods: In order to realize it we investigated a new approach utilizing the Bayesian estimation method combined with an attenuation curve measurement using step shaped attenuation material. This method was validated by precise measurement of energy spectrum from a 1 MeV electron accelerator. In this study, to extend the applicable X-ray energy range we tried to measure energy spectra of X-ray sources from 6 and 9 MeV linear accelerators by using the recently developed method. Results and Discussion: In this study, an attenuation curves are measured by using a step-shaped attenuation materials of aluminum and steel individually, and the each X-ray spectrum is reconstructed from the measured attenuation curve by the spectrum type Bayesian estimation method. Conclusion: The obtained result shows good agreement with simulated spectra, and the presently developed technique is adaptable for high energy X-ray source more than 6 MeV.

A Convenient Method on the Methyl-Ethyl-Ketone Extraction of $^{99m}TcO^-{_4}$ ($^{99m}TcO^-{_4}$의 메틸-에틸-케톤-간편 추출법)

  • Lee, Jong-Du;Lee, Byung-Hyn
    • Journal of Radiation Protection and Research
    • /
    • v.9 no.2
    • /
    • pp.103-111
    • /
    • 1984
  • A convenient method of $^{99m}Tc$-methyl-ethyl-ketone (MEK) extraction technique was developed and a mobile $^{99m}Tc$-extraction generator was designed. The MEK extraction and the phase separation of $^{99m}TcO^-{_4}$ were carried out with a simple procedure in the same container. The shielding of $^{99}Mo$ radioactivity was made with one lead container. The system was simplified by shielding $^{99m}TcO_4{^-}({\gamma}_e=0.14\;MeV)$ separately. $^{99m}TcO^-{_4}\;in\;^{99m}Tc-MEK$ extract was recovered by adsorption and elution only, and therefore, the possibility of volatilization was reduced. The volume of $^{99m}TcO^{-}{_4}$-saline product was reduced to 1 ml by using a small alumina column and the column operation time was shortened. The separation time of $^{99m}Tc$ was reduced to 30 minutes, and the operation was carried out at the outside of the shielding. The system was designed to operate under the condition of bacteria-free.

  • PDF

Assessing the Activity Concentration of Agricultural Products and the Public Ingestion Dose as Result of a Nuclear Accident

  • Keum, Dong-Kwon;Jeong, Hyojoon;Jun, In;Lim, Kwang-Muk;Choi, Yong-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.2
    • /
    • pp.39-49
    • /
    • 2018
  • Background: A model to assess the activity concentration of agricultural products and the public ingestion dose as result of a nuclear accident is necessarily required to manage the contaminated agricultural systems by the accident, or to estimate the effects of chronic exposure due to food ingestion at a Level 3 PSA. Materials and Methods: A dynamic compartment model, which is composed of three sub-modules, namely, an agricultural plant contamination assessment model, an animal product contamination assessment model, and an ingestion dose assessment model has been developed based on Korean farming characteristics such as the growth characteristics of rice and stockbreeding. Results and Discussion: The application study showed that the present model can predict well the characteristics of the activity concentration for agricultural products and ingestion dose depending on the deposition date. Conclusion: The present model is very useful to predict the radioactivity concentration of agricultural foodstuffs and public ingestion dose as consequence of a nuclear accident. Consequently, it is expected to be used effectively as a module for the ingestion dose calculation of the Korean agricultural contamination management system as well as the Level 3 PSA code, which is currently being developed.