• Title/Summary/Keyword: Radiation Monitoring

Search Result 532, Processing Time 0.025 seconds

A study on imaging device sensor data QC (영상장치 센서 데이터 QC에 관한 연구)

  • Dong-Min Yun;Jae-Yeong Lee;Sung-Sik Park;Yong-Han Jeon
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.52-59
    • /
    • 2022
  • Currently, Korea is an aging society and is expected to become a super-aged society in about four years. X-ray devices are widely used for early diagnosis in hospitals, and many X-ray technologies are being developed. The development of X-ray device technology is important, but it is also important to increase the reliability of the device through accurate data management. Sensor nodes such as temperature, voltage, and current of the diagnosis device may malfunction or transmit inaccurate data due to various causes such as failure or power outage. Therefore, in this study, the temperature, tube voltage, and tube current data related to each sensor and detection circuit of the diagnostic X-ray imaging device were measured and analyzed. Based on QC data, device failure prediction and diagnosis algorithms were designed and performed. The fault diagnosis algorithm can configure a simulator capable of setting user parameter values, displaying sensor output graphs, and displaying signs of sensor abnormalities, and can check the detection results when each sensor is operating normally and when the sensor is abnormal. It is judged that efficient device management and diagnosis is possible because it monitors abnormal data values (temperature, voltage, current) in real time and automatically diagnoses failures by feeding back the abnormal values detected at each stage. Although this algorithm cannot predict all failures related to temperature, voltage, and current of diagnostic X-ray imaging devices, it can detect temperature rise, bouncing values, device physical limits, input/output values, and radiation-related anomalies. exposure. If a value exceeding the maximum variation value of each data occurs, it is judged that it will be possible to check and respond in preparation for device failure. If a device's sensor fails, unexpected accidents may occur, increasing costs and risks, and regular maintenance cannot cope with all errors or failures. Therefore, since real-time maintenance through continuous data monitoring is possible, reliability improvement, maintenance cost reduction, and efficient management of equipment are expected to be possible.

Activity concentrations and radiological hazard assessments of 226Ra, 232Th, 40K, and 137Cs in soil samples obtained from the Dongnam Institute of Radiological & Medical Science, Korea

  • Jieun Lee;HyoJin Kim;Yong Uk Kye; Dong Yeon Lee;Wol Soon Jo;Chang Geun Lee;Jeung Kee Kim;Jeong-Hwa Baek;Yeong-Rok Kang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2388-2394
    • /
    • 2023
  • The radioactivity concentration of environmental radionuclides was analyzed for soil and sand at eight locations within a radius of 255 m centered on the Dongnam Institute of Radiological & Medical Science (DIRAMS), Korea. The average activity concentrations of 40K, 137Cs, 226Ra, and 232Th were 661.1 Bq/kg-dry, 0.9 Bq/kg-dry, 21.9 Bq/kg-dry, and 11.1 Bq/kg-dry, respectively. The activity of 40K and 137Cs was lower than the 3-year (2017-2019) average reported by the Korea Institute of Nuclear Safety, respectively. Due to the nature of granite-rich soil, the radioactivity of 40K was 0.6-fold higher than in other countries, while 137Cs was in the normal fluctuation range (15-30 Bq/kg-dry) of the concentration of radioactive fallout from nuclear tests. The activity of 226Ra and 232Th was lower than in Korean soils reported by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). The average activity concentrations of 232Th and 40K for the soil and sand samples from DIRAMS were within the range specified by UNSCEAR in 2000. The radium equivalent activity and internal and external hazard index values were below the recommended limits (1 mSv/y). These radionuclide concentration (226Ra, 232Th, 40K, and 137Cs) data can be used for regional environmental monitoring and ecological impact assessments of nuclear power plant accidents.

Initial Dosimetry of a Prototype Ultra-High Dose Rate Electron-Beam Irradiator for FLASH RT Preclinical Studies

  • Hyun Kim;Heuijin Lim;Sang Koo Kang;Sang Jin Lee;Tae Woo Kang;Seung Wook Kim;Wung-Hoa Park;Manwoo Lee;Kyoung Won Jang;Dong Hyeok Jeong
    • Progress in Medical Physics
    • /
    • v.34 no.3
    • /
    • pp.33-39
    • /
    • 2023
  • Purpose: FLASH radiotherapy (RT) using ultra-high dose rate (>40 Gy/s) radiation is being studied worldwide. However, experimental studies such as preclinical studies using small animals are difficult to perform due to the limited availability of irradiation devices and methods for generating a FLASH beam. In this paper, we report the initial dosimetry results of a prototype electron linear accelerator (LINAC)-based irradiation system to perform ultra-high dose rate (UHDR) preclinical experiments. Methods: The present study used the prototype electron LINAC developed by the Research Center of Dongnam Institute of Radiological and Medical Sciences (DIRAMS) in Korea. We investigated the beam current dependence of the depth dose to determine the optimal beam current for preclinical experiments. The dose rate in the UHDR region was measured by film dosimetry. Results: Depth dose measurements showed that the optimal beam current for preclinical experiments was approximately 33 mA, corresponding to a mean energy of 4.4 MeV. Additionally, the average dose rates of 80.4 Gy/s and 162.0 Gy/s at a source-to-phantom surface distance of 30 cm were obtained at pulse repetition frequencies of 100 Hz and 200 Hz, respectively. The dose per pulse and instantaneous dose rate were estimated to be approximately 0.80 Gy and 3.8×105 Gy/s, respectively. Conclusions: Film dosimetry verified the appropriate dose rates to perform FLASH RT preclinical studies using the developed electron-beam irradiator. However, further research on the development of innovative beam monitoring systems and stabilization of the accelerator beam is required.

A Case Study of Software Architecture Design by Applying the Quality Attribute-Driven Design Method (품질속성 기반 설계방법을 적용한 소프트웨어 아키텍처 설계 사례연구)

  • Suh, Yong-Suk;Hong, Seok-Boong;Kim, Hyeon-Soo
    • The KIPS Transactions:PartD
    • /
    • v.14D no.1 s.111
    • /
    • pp.121-130
    • /
    • 2007
  • in a software development, the design or architecture prior to implementing the software is essential for the success. This paper presents a case that we successfully designed a software architecture of radiation monitoring system (RMS) for HANARO research reactor currently operating in KAERI by applying the quality attribute-driven design method which is modified from the attribute-driven design (ADD) introduced by Bass[1]. The quality attribute-driven design method consists of following procedures: eliciting functionality and quality requirements of system as architecture drivers, selecting tactics to satisfy the drivers, determining architectures based on the tactics, and implementing and validating the architectures. The availability, maintainability, and interchangeability were elicited as duality requirements, hot-standby dual servers and weak-coupled modulization were selected as tactics, and client-server structure and object-oriented data processing structure were determined at architectures for the RMS. The architecture was implemented using Adroit which is a commercial off-the-shelf software tool and was validated based on performing the function-oriented testing. We found that the design method in this paper is an efficient method for a project which has constraints such as low budget and short period of development time. The architecture will be reused for the development of other RMS in KAERI. Further works are necessary to quantitatively evaluate the architecture.

Pre-radiotherapy and Post-radiotherapy Serial Serum Squamous Cell Carcinoma Antigen (SCC) and Carcinoembryonic Antigen (CEA) in the Monitoring of Squamous Cell Carcinoma of Uterine Cervix (자궁경부암 방사선치료시 Squamous Cell Carcinoma Antigen(SCC) 고k Carcinoembryonic Antigen(CEA) 의 종양표지자로서의 의의)

  • Yun, Hyong-Geun;Park, Choong-Hak
    • Radiation Oncology Journal
    • /
    • v.17 no.1
    • /
    • pp.30-35
    • /
    • 1999
  • Purpose : To evaluate the significance of squamous cell carcinoma antigen (SCC) and carcinoembryonic antigen (CEA) as tumor markers in uterine cervix carcinoma. Materials and Methods : In 22 patients with histologically proven primary squamous cell carcinoma of uterine cervix, tumor volume was checked either by using MRI (in 20 patients) or ultrasound (in 2 patients). Pre-treatment serum SCC levels were checked in 22 patients and CEA levels in 21 patients. After curative radiotherapy, post-treatment SCC and CEA were checked regularly. Results : SCC was raised In 68.2$\%$ and CEA was raised in 19.0$\%$ before treatment. The coefficient of correlation between tumor volume and pre-reatment SCC was 0.59382 when one extremely deviated case was excluded. And there was no correlation between tumor volume and CEA. After the treatment, SCC was raised En 9.1$\%$ and CEA was raised in 4.8$\%$. In further follow up measurement, raise of SCC was associated with clinical relapse or persistence of disease. The specificity of raised SCC level in association with recurrent or persistent disease was 93.8$\%$ . The sensitivity in association with recurrent or persistent disease was 100$\%$. The positive predictive values was 85.7$\%$. The median lead time for recurrence was 1.2 months. Conclusions: Both SCC and CEA were good tumor markers for monitoring treatment effect in patients with raised pre-treatment levels. But the sensitivity of pretreatment CEA was low, while that of pretreatment SCC was high. And there was no additional gain by adding CEA measurements to SCC measurements.

  • PDF

The Effect of PET Scan Time on the Off-Line PET Image Quality in Proton Therapy (양성자 치료에서 영상 획득 시간에 따른 Off Line PET의 효율성 검증)

  • Hong, Gun-Chul;Jang, Joon-Yung;Park, Se-Joon;Cha, Eun-Sun;Lee, Hyuk
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.2
    • /
    • pp.74-79
    • /
    • 2017
  • Purpose Proton therapy can deliver an optimal dose to tumor while reducing unnecessary dose to normal tissue as compared the conventional photon therapy. As proton beams are irradiated into tissue, various positron emitters are produced via nuclear fragmentation reactions. These positron emitters could be used for the dose verification by using PET. However, the short half-life of the radioisotopes makes it hard to obtain the enough amounts of events. The aim of this study is to investigate the effect of off-line PET imaging scan time on the PET image quality. Materials and Methods The various diameters of spheres (D=37, 28, 22 mm) filled with distilled water were inserted in a 2001 IEC body phantom. Then proton beams (100 MU) were irradiated into the center of the each sphere using the wobbling technique with the gantry angle of $0^{\circ}$. The modulation widths of the spread out bragg peak were 16.4, 14.7 and 9.3 cm for the spheres of 37, 28 and 22 mm in diameters respectively. After 5 min of the proton irradiation, the PET images of the IEC body phantom were obtained for 50 min. The PET images with different time courses (0-10 min, 11-20 min, 21-30 min, 31-40 min and 41-50 min) were obtained by dividing the frame with a duration of 10 min. In order to evaluate the off-line PET image quality with the different time courses, the contrast-to-noise ratio (CNR) of the PET image calculated for each sphere. Results The CNRs of the sphere (D=37 mm) were 0.43, 0.42, 0.40, 0.31 and 0.21 for the time courses of 0-10 min, 11-20 min, 21-30 min, 31-40 min and 41-50 min respectively. The CNRs of the sphere (D=28 mm) were 0.36, 0.32, 0.27, 0.19 and 0.09 for the time courses of 0-10 min, 11-20 min, 21-30 min, 31-40 min and 41-50 min respectively. The CNR of 37 mm sphere was decreased rapidly after 30 min of the proton irradiation. In case of the spheres of 28 mm and 22 mm, the CNR was decreased drastically after 20 min of the irradiation. Conclusion The off-line PET imaging time is an important factor for the monitoring of the proton therapy. In case of the lesion diameter of 22 mm, the off-line PET image should be obtained within 25 min after the proton irradiation. When it comes to small size of tumor, the long PET imaging time will be beneficial for the proton therapy treatment monitoring.

  • PDF

Development of B4C Thin Films for Neutron Detection (스퍼터링 코팅기법을 이용한 중성자 검출용 B4C 박막 개발)

  • Lim, Chang Hwy;Kim, Jongyul;Lee, Suhyun;Cho, Sang-Jin;Choi, Young-Hyun;Park, Jong-Won;Moon, Myung Kook
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.2
    • /
    • pp.79-86
    • /
    • 2015
  • $^3He$ gas has been used for neutron monitors as the neutron converter owing to its advantages such as high sensitivity, good ${\gamma}$-discrimination capability, and long-term stability. However, $^3He$ is becoming more difficult to obtain in last few years due to a global shortage of $^3He$ gas. Accordingly, the cost of a neutron monitor using $^3He$ gas as a neutron converter is becoming more expensive. Demand on a neutron monitor using an alternative neutron conversion material is widely increased. $^{10}B$ has many advantages among various $^3He$ alternative materials, as a neutron converter. In order to develop a neutron converter using $^{10}B$ (actually $B_4C$), we calculated the optimal thickness of a neutron converter with a Monte Carlo simulation using MCNP6. In addition, a neutron converter was fabricated by the Ar sputtering method and the neutron signal detection efficiencies were measured with respect to various thicknesses of fabricated a neutron converter. Also, we developed a 2-dimensional multi-wire proportional chamber (MWPC) for neutron beam profile monitoring using the fabricated a neutron converter, and performed experiments for neutron response of the neutron monitor at the 30 MW research reactor HANARO at the Korea Atomic Energy Research Institute. The 2-dimensional MWPC with boron ($B_4C$) neutron converter was proved to be useful for neutron beam monitoring, and can be applied to other types of neutron imaging.

Serial Determinations of Serum Squamous Cell Carcinoma Antigen (SCC) during Radiotherapy for Uterine Cervix Cancer (자궁경부암에서 방사선치료 중 혈중 Squamous Cell Carcinoma Antigen 값의 변화)

  • Yun, Hyong-Geun;Park, Seok-Kun
    • Radiation Oncology Journal
    • /
    • v.19 no.2
    • /
    • pp.136-141
    • /
    • 2001
  • Purpose : To evaluate the significance of serum SCC for the monitoring of treatment response and the early detection of distant metastasis during radiotherapy (RT). Materials and Methods : In 13 patients with histologically proven primary squamous cell carcinoma of uterine cervix, serum SCC values were checked in pre-RT point, weekly during RT, and in post-RT point. Results : In 4 of 13 cases, metastasis appeared at the end of external RT, so that intracavitary radiation couldn't be peformed.01 these 4 cases,3 with elevated pre-RT SCC level, who resulted in lung metastasis on chest PA at the end of external RT showed decreased post-RT SCC value despite of metastasis. Of all 10 cases with elevated pre-RT SCC value (including 3 with metastasis at the end of external RT), SCC value was higher than pre-RT value in 7 at 9 Gy and the difference was statistically significant. At 18 Gy, SCC was higher in 4 and lower in 6 than pre-RT value. After 18 Gy, SCC value decreased continuously to the end of RT in all 10 cases. Conclusion : During RT, SCC value increased initially at 9 Gy. To 18 Gy, SCC value decreased to the nearly same with pre-RT value. After 18 Gy, to the end of RT, SCC value decreased continuously and normalized in completely responded cases. In cases with appearance of lung metastasis, SCC value also decreased with the disappearance of main mass of uterine cervix despite metastasis.

  • PDF

Recent Variations of UV Irradiance at Seoul 2004~2010 (서울의 최근 자외선 복사의 변화 2004~2010)

  • Kim, Jhoon;Park, Sang Seo;Cho, Nayeong;Kim, Woogyung;Cho, Hi Ku
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.429-438
    • /
    • 2011
  • The climatology of surface UV radiation for Seoul, presented in Cho et al. (1998; 2001), has been updated using measurement of surface erythemal ultraviolet (EUV) and total ultraviolet (TUV) irradiance (wavelength 286.5~363.0 nm) by a Brewer Spectrophotometer (MK-IV) for the period 2004~2010. The analysis was also carried out together with the broadband total (global) solar irradiance (TR ; 305~2800 nm) and cloud amount to compare with the UV variations, measured by Seoul meteorological station of Korean Meteorological Agency located near the present study site. Under all-sky conditions, the day-to-day variability of EUV exhibits annual mean of 98% in increase and 31% in decrease. It has been also shown that the EUV variability is 17 times as high as the total ozone in positive change, whereas this is 6 times higher in negative change. Thus, the day to day variability is dominantly caused rather by the daily synoptic situations than by the ozone variability. Annual mean value of daily EUV and TUV shows $1.62kJm^{-2}$ and $0.63MJm^{-2}$ respectively, whereas mean value of TR is $12.4MJm^{-2}$ ($143.1Wm^{-2}$). The yearly maximum in noon-time UV Index (UVI) varies between 9 and 11 depending on time of year. The highest UVI shows 11 on 20 July, 2008 during the period 2004~2010, but for the period 1994~2000, the index of 12 was recorded on 13 July, 1994 (Cho et al., 2001). A 40% of daily maximum UVI belongs to "low (UVI < 2)", whereas the UVI less than 5% of the maximum show "very high (8 < UVI < 10)". On average, the maximum UVI exceeded 8 on 9 days per year. The values of Tropospheric Emission Monitoring Internet Service (TEMIS) EUV and UVI under cloud-free conditions are 1.8 times and 1.5 times, respectively, higher than the all-sky measurements by the Brewer. The trend analysis in fractional deviation of monthly UV from the reference value shows a decrease of -0.83% and -0.90% $decade^{-1}$ in the EUV and TUV, respectively, whereas the TR trend is near zero (+0.11% $decade^{-1}$). The trend is statistically significant except for TR trend (p = 0.279). It is possible that the recent UV decrease is mainly associated with increase in total ozone, but the trend in TR can be attributed to the other parameters such as clouds except the ozone. Certainly, the cloud effects suggest that the reason for the differences between UV and TR trends can be explained. In order to estimate cloud effects, the EUV, TUV and TR irradiances have been also evaluated for clear skies (cloud cover < 25%) and cloudy skies (cloud cover ${\geq}$ 75%). Annual mean values show that EUV, TUV and TR are $2.15kJm^{-2}$, $0.83MJm^{-2}$, and $17.9MJm^{-2}$ for clear skies, and $1.24kJm^{-2}$, $0.46MJm^{-2}$, and $7.2MJm^{-2}$ for cloudy skies, respectively. As results, the transmission of radiation through clouds under cloudy-sky conditions is observed to be 58%, 55% and 40% for EUV, TUV and TR, respectively. Consequently, it is clear that the cloud effects on EUV and TUV are 18% and 15%, respectively lower than the effects on TR under cloudy-sky conditions. Clouds under all-sky conditions (average of cloud cover is 5 tenths) reduced the EUV and TUV to about 25% of the clear-sky (cloud cover < 25%) values, whereas for TR, this was 31%. As a result, it is noted that the UV radiation is attenuated less than TR by clouds under all weather conditions.

Long Term Follow Up Results of Serum Squamous Cell Carcinoma Antigen Level in Uterine Cervix Cancer Treated by Radiotherapy (자궁경부암 방사선치료 후 혈중 Squamous Cell Carcinoma 항원치의 장기추적 결과)

  • Yun, Hyong-Geun
    • Radiation Oncology Journal
    • /
    • v.21 no.4
    • /
    • pp.283-290
    • /
    • 2003
  • Purpose: To evaluate the long term significance of the squamous cell carcinoma (SCC) antigen (Ag) as a tumor marker in uterine cervix carcinoma. Materials and Methods: The SCC antigen levels of pre-radiotherapy and serial post-radiotherapy serum were analyzed in 48 patients who received radiotherapy with histologically proven primary SCC of the uterine cervix. Results: Pre-radiotherapy SCC Ag level was high ($\geq$2 ng/ml) at 79.2$\%$. After the treatment, the SCC Ag level was significantly decreased. The SCC Ag level measured at about 3 months after radiotherapy was high at 23.0$\%$. In further follow up measurements, a rise of the SCC Ag to a high level was well associated with clinical relapse. The specificity of the elevated SCC Ag level in association with recurrent or persistent disease was 100$\%$, and the sensitivity was 85.7$\%$. In 3 of 4 lung metastasis cases, lung lesions were detected in chest PA before elevation of the SCC Ag level. The median lead time of the high SCC Ag level to clinical recurrence was 4 months. Conclusion: SCC Ag was a good tumor marker for monitoring treatment effect in patients with increased pre-treatment levels except in case of early lung metastasis. Elevation of the SCC Ag level after radiotherapy accurately predicted the treatment failure with lead time of 4 months. But, in early lung metastasis cases, the SCC level may be normal temporarily. Thus, chest PA should be checked to evaluate the presence of lung metastasis.